Profound hypothermia and no ECMO?

July 11, 2014 by  
Filed under Acute Med, All Updates, ICU, Kids, Resus


Patients in cardiac arrest due to severe hypothermia benefit from extracorporeal rewarming, and it is often recommended that they are treated at centres capable of providing cardiopulmonary bypass or extracorporeal membrane oxygenation (ECMO).

But what if they’re brought to a centre that doesn’t have those facilities?

If you work in such a centre do you have a plan, and are you familiar with what equipment you could use?

One option if you have an ICU is to provide extracorporeal warming using a haemofiltration machine used for renal replacement therapy(1). A double lumen haemofiltration catheter is inserted into a central vein and an ICU nurse can often do the rest, although some variables have to be set by the intensivist, often aided by a standard renal replacement therapy prescription chart. The machines are mobile and can be wheeled into the resus room (I have practiced this set up in resus). It might be worth discussing and practicing this option with your ICU.

Another extracorporeal option is to rig up a rapid infusion device such as a ‘Level 1′ to connect to arterial and venous catheters so that blood from the patient flows through and is warmed by the machine before being returned to the patient(2). Rapid rewarming has been achieved by this method but it requires some modification to the usual set up and so is much less likely to be a realistic option for most teams doing this on very rare occasions.

Less technical options are the traditionally taught warm saline lavage of body cavities such as the thorax and the peritoneal cavity. These can be achieved with readily available catheters and of course should be combined with ventilation with warmed gas and administration of warm intravenous fluid.

Thoracic lavage can be achieved with open thoracotomy or tube thoracostomy. One or two chest tubes can be placed on each side. One technique was described as:

Two 36 French chest tubes were placed in each hemithorax. One tube was placed in the fourth intercostal space in the mid-clavicular line. Another tube was placed into the sixth intercostal space in the mid-axillary line. Sterile saline at 39.0◦C was infused by gravity into each superior chest tube and allowed to drain passively through each inferior tube.(3)

Rapid rewarming at a rate of 6.8◦C per hour was achieved in an arrested hypothermic man using peritoneal lavage. It was done in the operating room with peritoneal lavage (saline 40◦C) with a rapid infusion system (Level 1) through two laparoscopic access sites. It was combined with external forced air rewarming and warm intravenous infusions(4).

Finally some devices manufactured for inducing hypothermia in post-cardiac arrest patients can also be used to rewarm patients, which might be endovascular devices, such as the Cool Line® catheter(5), or external, such as the Arctic Sun® Temperature Management System(6). It’s definitely worth finding out what your critical care services have as far as this equipment goes.

In summary, although the ‘exam answer’ for cardiac arrest due to profound hypothermia is often ECMO/cardiopulmonary bypass, in most centres that’s not an option. It’s helpful to remind ourselves that (1) other extracorporeal rewarming options exist and (2) non-extracorporeal techniques can provide rapid rewarming.


1. Spooner K, Hassani A. Extracorporeal rewarming in a severely hypothermic patient using venovenous haemofiltration in the accident and emergency department. J Accid Emerg Med. 2000 Nov;17(6):422–4. Full text

2. Gentilello LM, Cobean RA, Offner PJ, Soderberg RW, Jurkovich GJ. Continuous arteriovenous rewarming: rapid reversal of hypothermia in critically ill patients. The Journal of Trauma: Injury, Infection, and Critical Care. 1992 Mar;32(3):316–25 PubMed

3. Plaisier BR. Thoracic lavage in accidental hypothermia with cardiac arrest — report of a case and review of the literature. Resuscitation. 2005 Jul;66(1):99–104. PubMed

4. Gruber E, Beikircher W, Pizzinini R, Marsoner H, Pörnbacher M, Brugger H, et al. Non-extracorporeal rewarming at a rate of 6.8°C per hour in a deeply hypothermic arrested patient. Resuscitation. 2014 Aug;85(8):e119–20. PubMed

5. Kiridume K, Hifumi T, Kawakita K, Okazaki T, Hamaya H, Shinohara N, et al. Clinical experience with an active intravascular rewarming technique for near-severe hypothermia associated with traumatic injury. Journal of Intensive Care. BioMed Central Ltd; 2014;2(1):11. link to abstract

6. Cocchi MN, Giberson B, Donnino MW. Rapid rewarming of hypothermic patient using arctic sun device. Journal of Intensive Care Medicine. 2012 Mar;27(2):128–30. PubMed

When to Stop Resuscitation

July 9, 2014 by  
Filed under Acute Med, All Updates, EMS, Guidelines, ICU, Kids, Resus, Trauma

Comments Off

My talk at the SmaccGOLD conference in March 2014

Cliff Reid – When Should Resuscitation Stop from Social Media and Critical Care on Vimeo.

Here are the slides:

Down with “down” time!

May 11, 2014 by  
Filed under Acute Med, All Updates, EMS, Resus

CPR-icon2A man in his 40s has a witnessed collapse and CPR is immediately started. Paramedics are on scene within 5 minutes and initiate advanced cardiac life support. He has refractory ventricular fibrillation which degenerates to asystole. He arrives in an emergency department where, with good ongoing CPR, he appears reasonably well perfused and even demonstrates some spontaneous movements and reactive pupils. He is placed on a mechanical CPR device and activation of the cardiac cath lab is requested. The patient has been in cardiac arrest now for 32 minutes. The cardiology fellow appears and asks: ‘what’s the down time?’

What’s the right answer? Would you say ‘half an hour’? ’32 minutes’?
And does it matter? Why is the cardiology fellow asking? Does she have an arbitrary cut off in mind, over which emergency coronary reperfusion will be denied?

I think there are several problems with conversations like these.
The first, is what does ‘down time’ even mean?
The second, is how relevant is a cardiac arrest time interval to prognosis in an individual patient?
The third, is what is the significance of any time interval in a patient who at the time of assessment has some signs that CPR is providing some perfusion and there is some evidence of brain function?

Let’s take the first. The definition of ‘down time’ does not appear to be standardised:

In this publication it appears to refer to the time before resuscitation is commenced, where it is demonstrated to be prognostically important.

Similarly, in this medical dictionary, it is defined as the ‘temporal duration from cardiac arrest until beginning cardiopulmonary resuscitation or advanced cardiac life support.

However, a post in Life in the Fast Lane defines it as ‘time to return of spontaneous circulation

This appears to agree with The New South Wales Government’s Intensive Care Monitoring and Coordination Unit who define it as ‘the time from when a person’s heart stops beating to the time it starts beating again

Yet another definition is used in King County, Washington, where it is defined as ‘the time interval from collapse to call 911‘.

So the first thing is to clarify what we’re talking about: “This patient received immediate bystander CPR. He has had resuscitation for 32 minutes”. My friend in the UK, nurse resuscitationist Fernando Candal Carballido, coined the term ‘Time of Supported Circulation‘, or TOSC. I quite like this and think it could catch on.

The next question is so what? What if it was 90 minutes? At what point do we declare futility? This is where I believe the game has changed. Multiple survivors of prolonged resuscitation are springing up in the news and in the literature. Particularly in the subgroup of patients with minimal comorbidity, early CPR, and who receive circulatory support via ECMO or mechanical CPR while they undergo coronary reperfusion.

For a great example of a prolonged CPR survivor, check out paramedic Wayne Schneider’s story,

…or listen to Steven Bernard describe amazing results from ECMO used in Melbourne in the CHEER study, which includes survivors of over two hours of CPR.

So, in summary:

  • Be clear on your definitions when communicating with colleagues. ‘Down time’ does not appear to have a standard definition, so I would avoid its use.
  • Some patients without comorbidities who have had early bystander CPR may survive despite long periods of CPR (or ‘TOSC’), provided the underlying cause can be treated or is reversible.
  • ECMO and even more widely available mechanical CPR devices are extending the period in which these causes can be addressed.

Breaking with tradition in paediatric RSI

April 8, 2014 by  
Filed under All Updates, EMS, ICU, Kids, Resus

‘Traditional’ rapid sequence induction of anaesthesia is often described with inclusion of cricoid pressure and the strict omission of any artifical ventilation between paralytic drug administration and insertion of the tracheal tube. These measures are aimed at preventing pulmonary aspiration of gastric contents although there is no convincing evidence base to support that. However it is known that cricoid pressure can worsen laryngoscopic view and can occlude the paediatric airway. We also know that children desaturate quickly after the onset of apnoea, and although apnoeic diffusion oxygenation via nasal cannula can prevent or delay that, in some cases it may be preferable to bag-mask ventilate the patient while awaiting full muscle relaxation for laryngoscopy.

A Swiss study looked at 1001 children undergoing RSI for non-cardiac surgery. They used a ‘controlled rapid sequence induction and intubation (cRSII)’ approach for children assumed to have full stomachs. This procedure resembled RSI the way it is currently done in many modern critical care settings, including the retrieval service I work for:

  • No cricoid pressure
  • Ketamine for induction if haemodynamically unstable
  • A non-depolarising neuromuscular blocker rather than succinylcholine
  • No cricoid pressure
  • Gentle facemask ventilation to maintain oxygenation until intubation conditions achieved
  • Intubation with a cuffed tracheal tube
  • Still no cricoid pressure

The authors comment:

The main finding was that cRSII demonstrated a considerably lower incidence of oxygen desaturation and consecutive hemodynamic adverse events during anesthesia induction than shown by a previous study on classic RSII in children. Furthermore, there was no incidence of pulmonary aspiration during induction, laryngoscopy, and further course of anesthesia.

Looks like more dogma has been lysed, and this study supports the current trajectory away from traditional teaching towards an approach more suitable for critically ill patients.

Controlled rapid sequence induction and intubation – an analysis of 1001 children
Paediatr Anaesth. 2013 Aug;23(8):734-40

BACKGROUND: Classic rapid sequence induction puts pediatric patients at risk of cardiorespiratory deterioration and traumatic intubation due to their reduced apnea tolerance and related shortened intubation time. A ‘controlled’ rapid sequence induction and intubation technique (cRSII) with gentle facemask ventilation prior to intubation may be a safer and more appropriate approach in pediatric patients. The aim of this study was to analyze the benefits and complications of cRSII in a large cohort.

METHODS: Retrospective cohort analysis of all patients undergoing cRSII according to a standardized institutional protocol between 2007 and 2011 in a tertiary pediatric hospital. By means of an electronic patient data management system, vital sign data were reviewed for cardiorespiratory parameters, intubation conditions, general adverse respiratory events, and general anesthesia parameters.

RESULTS: A total of 1001 patients with cRSII were analyzed. Moderate hypoxemia (SpO2 80-89%) during cRSII occurred in 0.5% (n = 5) and severe hypoxemia (SpO2 <80%) in 0.3% of patients (n = 3). None of these patients developed bradycardia or hypotension. Overall, one single gastric regurgitation was observed (0.1%), but no pulmonary aspiration could be detected. Intubation was documented as ‘difficult’ in two patients with expected (0.2%) and in three patients with unexpected difficult intubation (0.3%). The further course of anesthesia as well as respiratory conditions after extubation did not reveal evidence of ‘silent aspiration’ during cRSII.

CONCLUSION: Controlled RSII with gentle facemask ventilation prior to intubation supports stable cardiorespiratory conditions for securing the airway in children with an expected or suspected full stomach. Pulmonary aspiration does not seem to be significantly increased.

Palpating neonatal tracheal tubes

April 6, 2014 by  
Filed under All Updates, EMS, ICU, Kids, Resus

Comments Off

infant-intubate-iconAfter neonatal intubation, the incidence of malposition of the tip of the tracheal tube is fairly high.

A technique was evaluated involving palpation of the tube tip in the suprasternal notch, which in this small study was superior to insertion length based on a weight-based nomogram.

The suprasternal notch was chosen because it anatomically corresponds to vertebral level T2, close to the optimal position at the mid-tracheal point. Correct position on the chest radiograph was defined as any position <0.5 cm above the interclavicular midpoint and more than 1 cm above the carina.

During tracheal tube placement, the tip was gently palpated in the suprasternal notch with the index or little finger of the left hand while holding the body of the tube with the fingers of the right hand. The tube tip was adjusted until the bevelled edge was just palpable in the the suprasternal notch.

Digital palpation of endotracheal tube tip as a method of confirming endotracheal tube position in neonates: an open-label, three-armed randomized controlled trial.
Paediatr Anaesth. 2013 Oct;23(10):934-9

OBJECTIVE: To compare the malposition rates of endotracheal tubes (ETTs) when the insertional length (IL) is determined by a weight-based nomogram versus when IL is determined by palpation of the ETT tip.

DESIGN: Open-label, randomized controlled trial (RCT).

SETTING: Level III neonatal intensive care unit (NICU).

SUBJECTS: All newborn babies admitted in NICU requiring intubation.

INTERVENTIONS: Subjects were randomly allocated to one of three groups, wherein IL was determined by (i) weight-based nomogram alone, (ii) weight-based nomogram combined with suprasternal palpation of ETT tip performed by specially trained neonatology fellows, or (iii) combination of weight-based and suprasternal methods by personnel not specially trained.

PRIMARY OUTCOME: Rate of malposition of ETT as judged on chest X-ray (CXR).

RESULTS: Fifty seven babies were randomized into group 1(n = 15), group 2 (n = 20), and group 3 (n = 22). The proportion of correct ETT placement was highest in group 2, being 66.7%, 83.3%, and 66.7% in groups 1 through 3, respectively (P value = 0.58). No complication was attributable to palpation technique.

CONCLUSION: Suprasternal palpation shows promise as a simple, safe, and teachable method of confirming ETT position in neonates.

Atropine for Paediatric RSI?

April 5, 2014 by  
Filed under All Updates, EMS, ICU, Kids, Resus

Comments Off

paedRSIdrugiconIn some areas it has been traditional to pre-medicate or co-medicate with atropine when intubating infants and children, despite a lack of any evidence showing benefit. It is apparently still in the American Pediatric Advanced Life Support (PALS) Provider Manual when age is less than 1 year or age is 1–5 years and receiving succinylcholine. However it is not recommended with rapid sequence intubation in the British and Australasian Advanced Paediatric Life Support manual and course.

A French non-randomised observational study compares intubations with and without atropine in the neonatal and paediatric critical care setting. Atropine use was associated with significant acceleration of heart rate, and no atropine use was associated with a higher incidence of new dysrhythmia, the most common being junctional rhythm, but with none appearing to be clinically significant.

The incidence of the most important peri-intubation cause of bradycardia – hypoxia – is not reported. It is also not clear how many intubation attempts were required. The authors admit:

it is not possible using our methodology to deduce whether bradycardia was due to hypoxia, laryngoscopy, or sedation drugs.

Actual rapid sequence was rarely employed – their use of muscle relaxants was low – making this difficult to extrapolate to modern emergency medicine / critical care practice.

My take home message here is that this study provides no argument whatsoever for the addition of atropine in routine RSI in the critically ill child. Why complicate a procedure with an unnecessary tachycardia-causing drug when the focus should be on no desat / no hypotension / first look laryngoscopy?

The Effect of Atropine on Rhythm and Conduction Disturbances During 322 Critical Care Intubations
Pediatr Crit Care Med. 2013 Jul;14(6):e289-97

OBJECTIVES: Our objectives were to describe the prevalence of arrhythmia and conduction abnormalities before critical care intubation and to test the hypothesis that atropine had no effect on their prevalence during intubation.

DESIGN: Prospective, observational study.

SETTING: PICU and pediatric/neonatal intensive care transport.

SUBJECTS: All children of age less than 8 years intubated September 2007-2009. Subgroups of intubations with and without atropine were analyzed.


MEASUREMENT AND MAIN RESULTS: A total of 414 intubations were performed in the study period of which 327 were available for analysis (79%). Five children (1.5%) had arrhythmias prior to intubation and were excluded from the atropine analysis. Atropine was used in 47% (152/322) of intubations and resulted in significant acceleration of heart rate without provoking ventricular arrhythmias. New arrhythmias during intubation were related to bradycardia and were less common with atropine use (odds ratio, 0.14 [95% CI, 0.06-0.35], p < 0.001). The most common new arrhythmia was junctional rhythm. Acute bundle branch block was observed during three intubations; one Mobitz type 2 rhythm and five ventricular escape rhythms occurred in the no-atropine group (n = 170). Only one ventricular escape rhythm occurred in the atropine group (n = 152) in a child with an abnormal heart. One child died during intubation who had not received atropine.

CONCLUSIONS: Atropine significantly reduced the prevalence of new arrhythmias during intubation particularly for children over 1 month of age, did not convert sinus tachycardia to ventricular tachycardia or fibrillation, and may contribute to the safety of intubation.

Resus Team Size and Productivity

April 3, 2014 by  
Filed under All Updates, Kids, Resus, Trauma

paedsimiconA paediatric trauma centre study showed that in their system, seven people at the bedside was the optimum number to get tasks done in a paediatric resuscitation. As numbers increased beyond this, there were ‘diminishing marginal returns’, ie. the output (tasks completed) generated from an additional unit of input (extra people) decreases as the quantity of the input rises.

The authors comment that after a saturation point is reached, “additional team members contribute negative returns, resulting in fewer tasks completed by teams with the most members. This pattern has been demonstrated in other medical groups, with larger surgical teams having prolonged operative times and larger paramedic crews delaying the performance of cardiopulmonary resuscitation.

There are several possible explanations:

  • crowding limits access to the patient or equipment;
  • “social loafing”- staff may feel less accountable for the overall group performance and less pressure to accomplish individual tasks;
  • seven is the number recommended in that institution’s trauma activation protocol, with optimal role allocation described for a team of that size;
  • teams with redundant personnel may experience role confusion and fragmentation, resulting in both repetition and omission of tasks.

In my view, excessive team size results in there being more individuals to supervise & monitor, and hence a greater cognitive load for the team leader (cue the resus safety officer). More crowding and obstruction threatens situational awareness. There is more difficulty in providing clear uninterrupted closed loop communication. And general resuscitation room entropy increases, requiring more energy to contain or reverse it.

However, for paediatric resuscitations requiring optimal concurrent activity to progress the resuscitation, I do struggle with less than five. Unless of course I’m in my HEMS role, when the paramedic and I just crack on.

More on Making Things Happen in resus.

Own The Resus talk

Resus Room Management site

Factors Affecting Team Size and Task Performance in Pediatric Trauma Resuscitation.
Pediatr Emerg Care. 2014 Mar 19. [Epub ahead of print]

OBJECTIVES: Varying team size based on anticipated injury acuity is a common method for limiting personnel during trauma resuscitation. While missing personnel may delay treatment, large teams may worsen care through role confusion and interference. This study investigates factors associated with varying team size and task completion during trauma resuscitation.

METHODS: Video-recorded resuscitations of pediatric trauma patients (n = 201) were reviewed for team size (bedside and total) and completion of 24 resuscitation tasks. Additional patient characteristics were abstracted from our trauma registry. Linear regression was used to assess which characteristics were associated with varying team size and task completion. Task completion was then analyzed in relation to team size using best-fit curves.

RESULTS: The average bedside team ranged from 2.7 to 10.0 members (mean, 6.5 [SD, 1.7]), with 4.3 to 17.7 (mean, 11.0 [SD, 2.8]) people total. More people were present during high-acuity activations (+4.9, P < 0.001) and for patients with a penetrating injury (+2.3, P = 0.002). Fewer people were present during activations without prearrival notification (-4.77, P < 0.001) and at night (-1.25, P = 0.002). Task completion in the first 2 minutes ranged from 4 to 19 (mean, 11.7 [SD, 3.8]). The maximum number of tasks was performed at our hospital by teams with 7 people at the bedside (13 total).

CONCLUSIONS: Resuscitation task completion varies by team size, with a nonlinear association between number of team members and completed tasks. Management of team size during high-acuity activations, those without prior notification, and those in which the patient has a penetrating injury may help optimize performance.

Blood pressure target in septic shock

April 1, 2014 by  
Filed under Acute Med, All Updates, ICU, Resus

Comments Off

ABP-iconA study comparing mean arterial pressure (MAP) targets of 80 to 85 mm Hg (high-target group) with 65 to 70 mm Hg (low-target group) n 776 septic shock patients – the SEPSISPAM study – did not show a difference in the primary endpoint of 28 day mortality. Among patients with chronic hypertension, those in the high-target group required less renal-replacement therapy than did those in the low-target group. In my view this supports an approach that targets MAP based on the individual patient’s history rather than a blanket one-number-fits-all approach. The MAPs actually achieved in the low-target group were between 70-75 mm of Hg.

For a more thorough review check out the great PulmCCM blog.

High versus Low Blood-Pressure Target in Patients with Septic Shock.
N Engl J Med. 2014 Mar 18. [Epub ahead of print] Free Full Text

Background: The Surviving Sepsis Campaign recommends targeting a mean arterial pressure of at least 65 mm Hg during initial resuscitation of patients with septic shock. However, whether this blood-pressure target is more or less effective than a higher target is unknown.

Methods: In 31 emergency departments in the United States, we randomly assigned patients with septic shock to one of three groups for 6 hours of resuscitation: protocol-based EGDT; protocol-based standard therapy that did not require the placement of a central venous catheter, administration of inotropes, or blood transfusions; or usual care. The primary end point was 60-day in-hospital mortality. We tested sequentially whether protocol-based care (EGDT and standard-therapy groups combined) was superior to usual care and whether protocol-based EGDT was superior to protocol-based standard therapy. Secondary outcomes included longer-term mortality and the need for organ support.

Results: At 28 days, there was no significant between-group difference in mortality, with deaths reported in 142 of 388 patients in the high-target group (36.6%) and 132 of 388 patients in the low-target group (34.0%) (hazard ratio in the high-target group, 1.07; 95% confidence interval [CI], 0.84 to 1.38; P=0.57). There was also no significant difference in mortality at 90 days, with 170 deaths (43.8%) and 164 deaths (42.3%), respectively (hazard ratio, 1.04; 95% CI, 0.83 to 1.30; P=0.74). The occurrence of serious adverse events did not differ significantly between the two groups (74 events [19.1%] and 69 events [17.8%], respectively; P=0.64). However, the incidence of newly diagnosed atrial fibrillation was higher in the high-target group than in the low-target group. Among patients with chronic hypertension, those in the high-target group required less renal-replacement therapy than did those in the low-target group, but such therapy was not associated with a difference in mortality.

Conclusions: Targeting a mean arterial pressure of 80 to 85 mm Hg, as compared with 65 to 70 mm Hg, in patients with septic shock undergoing resuscitation did not result in significant differences in mortality at either 28 or 90 days.

No Benefit From Early Goal Directed Therapy

March 19, 2014 by  
Filed under Acute Med, All Updates, Guidelines, ICU, Resus

The first of three major trials assessing early goal directed therapy (EGDT) in sepsis – the American ProCESS Trial – has been published.

It showed what many of us thought – that the specific monitoring via a central line of central venous oxygen saturation – was not necessary for improved survival.

However the trial randomised 1341 patients to one of three arms:
(1) protocolised EGDT
(2) protocol-based standard therapy that did not require the placement of a central venous catheter, administration of inotropes, or blood transfusions
(3) ‘usual care’ which was not standardised.

There were no differences in any of the primary or secondary outcomes between the groups.

Interestingly, in the six hours of early care that the trial dictated, the volume of intravenous fluids administered differed significantly among the groups (2.8 litres in the protocol-based EGDT group, 3.3 litres in the protocol-based standard-therapy group, and 2.3 litres in the usual-care group).

There was also a difference in the amount of vasopressor given, with more patients in the two protocol-based groups receiving vasopressors (54.9% in the protocol-based EGDT group, 52.2% in the protocol-based standard-therapy group, 44.1% in the usual-care group).

The use of intravenous fluids, vasopressors, dobutamine, and blood transfusions between 6 and 72 hours did not differ significantly among the groups.

Overall 60 day mortality was in the region of 20% for all groups.

What are the take home points here? Firstly, overall sepsis outcomes have improved over recent years, and early recognition and antibiotic administration may be the most important components of care. In the early emergency department phase of care, protocolised fluid and vasopressor therapy may not be as important as we thought. Good clinical assessment and regular review seem to be as effective and perhaps more important than any specific monitoring modality or oxygen delivery-targeted drug and blood therapy.

We all await the ARISE and ProMISE studies which may shed more light on the most important components of early sepsis care.

A Randomized Trial of Protocol-Based Care for Early Septic Shock
NEJM Mar 18 2014 (Full Text Link)

Background: In a single-center study published more than a decade ago involving patients presenting to the emergency department with severe sepsis and septic shock, mortality was markedly lower among those who were treated according to a 6-hour protocol of early goal-directed therapy (EGDT), in which intravenous fluids, vasopressors, inotropes, and blood transfusions were adjusted to reach central hemodynamic targets, than among those receiving usual care. We conducted a trial to determine whether these findings were generalizable and whether all aspects of the protocol were necessary.

Methods: In 31 emergency departments in the United States, we randomly assigned patients with septic shock to one of three groups for 6 hours of resuscitation: protocol-based EGDT; protocol-based standard therapy that did not require the placement of a central venous catheter, administration of inotropes, or blood transfusions; or usual care. The primary end point was 60-day in-hospital mortality. We tested sequentially whether protocol-based care (EGDT and standard-therapy groups combined) was superior to usual care and whether protocol-based EGDT was superior to protocol-based standard therapy. Secondary outcomes included longer-term mortality and the need for organ support.

Results: We enrolled 1341 patients, of whom 439 were randomly assigned to protocol-based EGDT, 446 to protocol-based standard therapy, and 456 to usual care. Resuscitation strategies differed significantly with respect to the monitoring of central venous pressure and oxygen and the use of intravenous fluids, vasopressors, inotropes, and blood transfusions. By 60 days, there were 92 deaths in the protocol-based EGDT group (21.0%), 81 in the protocol-based standard-therapy group (18.2%), and 86 in the usual-care group (18.9%) (relative risk with protocol-based therapy vs. usual care, 1.04; 95% confidence interval [CI], 0.82 to 1.31; P=0.83; relative risk with protocol-based EGDT vs. protocol-based standard therapy, 1.15; 95% CI, 0.88 to 1.51; P=0.31). There were no significant differences in 90-day mortality, 1-year mortality, or the need for organ support.

Conclusions: In a multicenter trial conducted in the tertiary care setting, protocol-based resuscitation of patients in whom septic shock was diagnosed in the emergency department did not improve outcomes

Use a table for selecting PEEP in ARDS

March 13, 2014 by  
Filed under Acute Med, All Updates, ICU, Resus

Comments Off

PEEPtable.001Selecting the right amount of PEEP to recruit collapsed alveoli in patients with ARDS is important but the best method isn’t proven. Using a table to select PEEP based on FiO2 was significantly but weakly associated with improved lung recruitability (on CT scan) when compare with other methods of selecting PEEP, and was the best method for avoiding higher PEEP in patients with lower recruitability.

This is a small study and the results do not necessarily translate to improved clinical outcomes, but they may be of interest to emergency and retrieval medicine physicians who require a simple and safe strategy when managing ARDS patients without the luxury of time or of access to highly sophisticated ICU ventilators.

Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome
Crit Care Med. 2014 Feb;42(2):252-64

OBJECTIVE: Positive end-expiratory pressure exerts its effects keeping open at end-expiration previously collapsed areas of the lung; consequently, higher positive end-expiratory pressure should be limited to patients with high recruitability. We aimed to determine which bedside method would provide positive end-expiratory pressure better related to lung recruitability.

DESIGN: Prospective study performed between 2008 and 2011.
SETTING: Two university hospitals (Italy and Germany).

PATIENTS: Fifty-one patients with acute respiratory distress syndrome.

INTERVENTIONS: Whole lung CT scans were taken in static conditions at 5 and 45 cm H2O during an end-expiratory/end-inspiratory pause to measure lung recruitability. To select individual positive end-expiratory pressure, we applied bedside methods based on lung mechanics (ExPress, stress index), esophageal pressure, and oxygenation (higher positive end-expiratory pressure table of lung open ventilation study).

MEASUREMENTS AND MAIN RESULTS: Patients were classified in mild, moderate and severe acute respiratory distress syndrome. Positive end-expiratory pressure levels selected by the ExPress, stress index, and absolute esophageal pressures methods were unrelated with lung recruitability, whereas positive end-expiratory pressure levels selected by the lung open ventilation method showed a weak relationship with lung recruitability (r = 0.29; p < 0.0001). When patients were classified according to the acute respiratory distress syndrome Berlin definition, the lung open ventilation method was the only one which gave lower positive end-expiratory pressure levels in mild and moderate acute respiratory distress syndrome compared with severe acute respiratory distress syndrome (8 ± 2 and 11 ± 3 cm H2O vs 15 ± 3 cm H2O; p < 0.05), whereas ExPress, stress index, and esophageal pressure methods gave similar positive end-expiratory pressure values in mild, moderate, and severe acute respiratory distress syndrome. The positive end-expiratory pressure selected by the different methods were unrelated to each other with the exception of the two methods based on lung mechanics (ExPress and stress index).

CONCLUSIONS: Bedside positive end-expiratory pressure selection methods based on lung mechanics or absolute esophageal pressures provide positive end-expiratory pressure levels unrelated to lung recruitability and similar in mild, moderate, and severe acute respiratory distress syndrome, whereas the oxygenation-based method provided positive end-expiratory pressure levels related with lung recruitability progressively increasing from mild to moderate and severe acute respiratory distress syndrome.

Next Page »