Palpating neonatal tracheal tubes

April 6, 2014 by  
Filed under All Updates, EMS, ICU, Kids, Resus

infant-intubate-iconAfter neonatal intubation, the incidence of malposition of the tip of the tracheal tube is fairly high.

A technique was evaluated involving palpation of the tube tip in the suprasternal notch, which in this small study was superior to insertion length based on a weight-based nomogram.

The suprasternal notch was chosen because it anatomically corresponds to vertebral level T2, close to the optimal position at the mid-tracheal point. Correct position on the chest radiograph was defined as any position <0.5 cm above the interclavicular midpoint and more than 1 cm above the carina.

During tracheal tube placement, the tip was gently palpated in the suprasternal notch with the index or little finger of the left hand while holding the body of the tube with the fingers of the right hand. The tube tip was adjusted until the bevelled edge was just palpable in the the suprasternal notch.

Digital palpation of endotracheal tube tip as a method of confirming endotracheal tube position in neonates: an open-label, three-armed randomized controlled trial.
Paediatr Anaesth. 2013 Oct;23(10):934-9


OBJECTIVE: To compare the malposition rates of endotracheal tubes (ETTs) when the insertional length (IL) is determined by a weight-based nomogram versus when IL is determined by palpation of the ETT tip.

DESIGN: Open-label, randomized controlled trial (RCT).

SETTING: Level III neonatal intensive care unit (NICU).

SUBJECTS: All newborn babies admitted in NICU requiring intubation.

INTERVENTIONS: Subjects were randomly allocated to one of three groups, wherein IL was determined by (i) weight-based nomogram alone, (ii) weight-based nomogram combined with suprasternal palpation of ETT tip performed by specially trained neonatology fellows, or (iii) combination of weight-based and suprasternal methods by personnel not specially trained.

PRIMARY OUTCOME: Rate of malposition of ETT as judged on chest X-ray (CXR).

RESULTS: Fifty seven babies were randomized into group 1(n = 15), group 2 (n = 20), and group 3 (n = 22). The proportion of correct ETT placement was highest in group 2, being 66.7%, 83.3%, and 66.7% in groups 1 through 3, respectively (P value = 0.58). No complication was attributable to palpation technique.

CONCLUSION: Suprasternal palpation shows promise as a simple, safe, and teachable method of confirming ETT position in neonates.

London Trauma Conference Day 3

December 13, 2013 by  
Filed under Acute Med, All Updates, EMS, ICU, Resus, Trauma


Dr Louisa Chan reports on Day 3 of the London Trauma Conference

There was a jam-packed line up for the Pre-hospital and Air Ambulance Day which was Co-hosted by the Norwegian Air Ambulance Foundation.
 

My highlights were:

HEMS

Dr Rasmus Hesselfeldt works in Denmark where they have a pretty good EMS system with ambulances, RRV’s and PHC doctors. Road conditions are good with the longest travel distance of 114 miles. So would the introduction of a HEMS service improve outcomes? He did an observational study looking at year of data post-trial and compared this with 5 months pre-trial. Trauma patients with ISS > 15 and medical emergencies greater than 30 min by road to the Trauma Centre (TC). Primary endpoint was time to TC, secondary outcomes were number of secondary transfers and 30 day mortality.

Results: Increase in on scene time 20 min vs 28 min, time to hospital increased but time to TC was less – 218 min vs 90 min, reduced mortality, increased direct transfer to TC and fewer secondary transfers.

Full article here: A helicopter emergency medical service may allow faster access to highly specialised care. Dan Med J. 2013 Jul;60(7):A4647

 

Airway

Prof Dan Davis ran through pre-hospital intubation. It seems that this man has spent his life trying to perfect airway management. Peter Rosen was his mentor and imprinted on him that RSI is the cornerstone of airway management.

So surely pre-hospital intubation saves lives. The evidence however begs to differ, or does it? As with all evidence we need to consider the validity of the results and luckily Prof Davis has spent a lot of time thinking through the reasons why there no evidence.

During his research he opened a huge can of worms:
1. Hyperventilation was common – any EtCO2 <30mmHg lead to a doubling in mortality.
2. First pass intubation is great, but not if you let your patient become hypoxic or hypotension or worse still both!
3. Hospital practice had similar issues.

So really the RSI processes he was looking at weren’t great.

The good news is that things have improved and he can now boast higher first pass rates and lower complication rates for his EMS system. His puts this success down to training.

 

 

AIRPORT-LTCThe AIRPORT study was discussed at last years LTC. This year we have the results. 21 HEMS services in 6 countries were involved in the data collection including GSA HEMS. The headline findings are that intubation success rates are high (98%) with a complication rate of 10-12%. The more difficult airways were seen in the non-trauma group. 28.2% patients died (mainly cardiac arrest).

 

 

Matt Thomas reported on REVIVE – a pre-hospital feasibility study looking at airway management in OHCA (I-Gel vs LMA Supreme vs standard care). It was never powered to show a difference in these groups, the main aim was to see if research in this very challenging area was possible. And the answer is YES. The paramedics involved recruited more patients than expected and stuck to the protocol (prob better that docs would have!). A randomised controlled trial to look at the I-Gel vs ETT is planned.

 

(P)REBOA

ReboaLTCFinally, Pre-hospital Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) seems eminently possible – Dr Nils Petter Oveland showed us the training manikin they developed for training. Through training on this manikin they achieved an average skin to balloon time of 3.3mins. Animal data supports this procedure as a bridge to definitive care in non compressible haemorrhage.

London HEMS will be starting (P)REBOA in the New Year.

So now it’s stand up science, I’m off for my glass of wine…………….

Check out what they’re saying about the London Trauma Conference on Twitter

Guidelines on prehospital drug-assisted LMA insertion

December 9, 2013 by  
Filed under All Updates, EMS, Guidelines, Trauma

The UK’s Faculty of Prehospital Care has published a number of consensus guidelines in this month’s EMJ

Dr Minh Le Cong‘s PHARM blog has summaries of three of them:

The final one is the most contentious: Pharmacologically assisted laryngeal mask insertion: a consensus statement(1). Here is the summary:

  1. The PALM technique is an acceptable tool for managing the prehospital airway
  2. The PALM technique is indicated in a rare set of circumstances
  3. The PALM procedure is a rescue technique
  4. The PALM procedure should be checklist driven
  5. At least a second generation SAD should be used
  6. End-tidal CO2 monitoring is mandatory
  7. No preference is expressed for any particular drug
  8. No preference is expressed for any particular dosing regime
  9. Flumazenil is highly unlikely to have a role in managing the PALM patient
  10. The PALM procedure should only be carried out by practitioners of level 7 or above competences
  11. The availability of a trained assistant, familiar with the procedure would be advantageous
  12. The training required to achieve competency in performing the PALM procedure must include in-hospital insertion of SADs, simulation training and training in the transfer of critically ill patients
  13. Data should be collected and collated at a national level for all patients who receive the PALM procedure

They qualify the first point with the statement: The consensus group felt that, in the hands of a specific set of practitioners and in certain circumstances, patients would benefit from the technique. It was recognised that pre-hospital airway management can be very challenging, and deeming the technique unacceptable could deprive patients of a potentially life saving intervention. It was felt that having another tool available to clinicians which could potentially improve patient outcome was important. This was despite the lack of a robust evidence base. It was felt that the technique is indicated in, and should be limited to, a very specific set of circumstances as described below

The publication lists some ‘Organisations represented at the consensus meeting’, which include some commercial training and equipment companies.

It also states that ‘The Royal College of Anaesthetists, although represented at the initial meeting, was unable to support the outcomes agreed by the other represented organisations.

This is a very interesting development. I can see the pros and cons of this. Since practitioners are out there doing PALM anyway, it is in the interests of patients to produce a statement that encourages monitoring, checklists, training, and data collection. To meet all the requirements, one must undergo ‘training in the transfer of critically ill patients’, which would normally necessitate more advanced airway and anaesthesia skills anyway.

A tough one – what would you want if there was no RSI capability but you were hypoxic with trismus and basic airway maneouvres were failing? An all out ban on PALM, or PALM provided by someone trained in surgical airway if it fails (as per the consensus recommendations)?

This and some of the other statements can be downloaded in full at the Faculty of Pre-hospital Care site

1. Pharmacologically assisted laryngeal mask insertion: a consensus statement
Emerg Med J. 2013 Dec;30(12):1073-5

Even the dead exhale CO2

October 9, 2013 by  
Filed under All Updates, Fascinomata, Resus

cadaverETCO2iconCardiac arrest patients sometimes have unrecognised oesophageal intubations because clinicians omit capnography, based on the assumption that circulatory arrest leads to an absence of exhaled CO2. This is wrong, and reassuringly the latest ILCOR cardiac arrest guidelines recommend waveform capnography during resuscitation.

Of interest is the fact that even corpses have CO2 in their lungs. While not clinically relevant, this may have value when fresh frozen cadavers are used for airway training, since we might be able to supplement the realism of airway instrumentation with the realism of connecting the capnography adaptor and circuit and seeing confirmation on the monitor.

This preliminary study, completed by my Sydney HEMS colleagues, needs further work, but it’s an interesting area.

Sustained life-like waveform capnography after human cadaveric tracheal intubation
Emerg Med J doi:10.1136/emermed-2013-203105


Introduction Fresh frozen cadavers are effective training models for airway management. We hypothesised that residual carbon dioxide (CO2) in cadaveric lung would be detectable using standard clinical monitoring systems, facilitating detection of tracheal tube placement and further enhancing the fidelity of clinical simulation using a cadaveric model.

Methods The tracheas of two fresh frozen unembalmed cadavers were intubated via direct laryngoscopy. Each tracheal tube was connected to a self-inflating bag and a sidestream CO2 detector. The capnograph display was observed and recorded in high-definition video. The cadavers were hand-ventilated with room air until the capnometer reached zero or the waveform approached baseline.

Results A clear capnographic waveform was produced in both cadavers on the first postintubation expiration, simulating the appearances found in the clinical setting. In cadaver one, a consistent capnographic waveform was produced lasting over 100 s. Maximal end-tidal CO2 was 8.5 kPa (65 mm Hg). In cadaver two, a consistent capnographic waveform was produced lasting over 50 s. Maximal end-tidal CO2 was 5.9 kPa (45 mm Hg).

Conclusions We believe this to be the first work to describe and quantify detectable end-tidal capnography in human cadavers. We have demonstrated that tracheal intubation of fresh frozen cadavers can be confirmed by life-like waveform capnography. This requires further validation in a larger sample size.

The non-intubation checklist

June 17, 2013 by  
Filed under All Updates, ICU, Resus

no-sm

Scenario:

A 79 year old previously well female presents with loss of consciousness, having been found unresponsive by her daughter who saw her well one hour previously.

Examination reveals a GCS of E1V2M3 = 6 and reactive pupils with no lateralising signs. She is hypertensive. A VBG reveals a normal glucose and sodium and a pCO2 of 60 mmHg (7.9 kPa).

The emergency physician’s plan is to intubate and get a CT scan of her brain. This is explained to the daughter.

A no-brainer? You’d think so.

A consistent issue that recurs during discussions with UK emergency medicine colleagues is that of having to rely on anaesthesia and/or ICU colleagues for intubation of their patients in the ED. The pain comes not from disagreeing about who does the procedure or what drugs to use, but rather on the decision to intubate.

The refusal to intubate can stall or halt a resuscitation plan, delay care, result in risky transfers to the imaging suite, and even deny potential outcome-improving therapy (for example post-ROSC cooling). It can undermine team leadership and disrupt the team dynamic.

There are often different ways to ‘skin a cat’ and it is frequently helpful to invite the opinion of other critical care specialists. However, it is clear from multiple discussions with frustrated EM colleagues that the decision not to intubate is often influenced by non-clinical factors, most often ICU bed availability. Other times, it appears to be that the ‘gatekeeper’ to airway care (and to ICU beds) does not share the same appreciation of the clinical issues at stake. Examples here include the self-fulfilling pessimism post-ROSC based on inappropriate assignment of predictive value to neurological signs, and the assumption of non-treatable pathology in elderly patients presenting with coma.

The obvious solution to this is that the responsibility for managing the ‘A’ of ABC should not be delegated to non-emergency medicine personnel. Sadly, this is not achievable 24/7 in all UK departments right now for a number of awkward reasons.

So what’s a team leader to do when faced with a colleague’s refusal to intubate? The best approach would be to gently and politely persuade them to change their mind by stating some clinical facts that enable a shared mental model and agreed management plan, and to ensure the most senior available physicians are participating in the discussion.

Sometimes that fails. What next? Here’s a suggestion. This is slightly tongue-in-cheek but take away from it what you will.

It is imperative that the individual declining intubation appreciates the gravity of his or her decision. They must not be under the impression that they’ve done you (and the patient) a favour by giving their opinion after an ‘airway consult’. They have declined a resuscitative intervention requested by the emergency medicine team leader and should appreciate the consequences of this decision and the need to document it as such.

Perhaps say something along the lines of:

I see we haven’t managed to agree on this. We’ll just need you to complete the non-intubation form please for our quality improvement process. This will also help prevent your point being forgotten or misunderstood if we’re unlucky enough to face any complaints or litigation. I can fill it in on your behalf but I suspect you’d want to represent yourself as accurately as possible when documenting such a bold decision

And here’s the form. It is provocative, cheeky, and in no way should really be used in its current form:

nonintubationchecklistsm

Thenar eminence based medicine

June 3, 2013 by  
Filed under All Updates, EMS, ICU, Kids, Resus, Trauma

thumbs-upA recent study showed superior effectiveness of one bag-mask ventilation style over another in novice providers. The technique recommended is the thenar eminence grip, in which downward pressure is applied with the thenar eminences while the four fingers of each hand pull the jaw upwards toward the mask.

Interestingly, in their crossover study in which the thenar emininence (TE) technique was compared with the traditionally taught ‘CE’ technique, they demonstrated a ‘sequence effect’. If subjects did TE first, they maintained good tidal volumes when doing CE. However if they did CE first, they achieved poor tidal volumes which were markedly improved when switching to TE.

The authors suggest: “A possible explanation for this sequence effect is that the TE grip is superior. When one used the TE grip first, he or she was more likely to learn how a good tidal volume “feels” and then more likely to apply good technique with the EC grip.“.

Some of us have been practicing and teaching this technique for a while. None have put it better than the brilliant Reuben Strayer of EM Updates in this excellent short video:


Efficacy of facemask ventilation techniques in novice providers
J Clin Anesth. 2013 May;25(3):193-7


STUDY OBJECTIVE: To determine which of two facemask grip techniques for two-person facemask ventilation was more effective in novice clinicians, the traditional E-C clamp (EC) grip or a thenar eminence (TE) technique.

DESIGN: Prospective, randomized, crossover comparison study.

SETTING: Operating room of a university hospital.

SUBJECTS: 60 novice clinicians (medical and paramedic students).

MEASUREMENTS: Subjects were assigned to perform, in a random order, each of the two mask-grip techniques on consenting ASA physical status 1, 2, and 3 patients undergoing elective general anesthesia while the ventilator delivered a fixed 500 mL tidal volume (VT). In a crossover manner, subjects performed each facemask ventilation technique (EC and TE) for one minute (12 breaths/min). The primary outcome was the mean expired VT compared between techniques. As a secondary outcome, we examined mean peak inspiratory pressure (PIP).

MAIN RESULTS: The TE grip provided greater expired VT (379 mL vs 269 mL), with a mean difference of 110 mL (P < 0.0001; 95% CI: 65, 157). Using the EC grip first had an average VT improvement of 200 mL after crossover to the TE grip (95% CI: 134, 267). When the TE grip was used first, mean VTs were greater than for EC by 24 mL (95% CI: -25, 74). When considering only the first 12 breaths delivered (prior to crossover), the TE grip resulted in mean VTs of 339 mL vs 221 mL for the EC grip (P = 0.0128; 95% CI: 26, 209). There was no significant difference in PIP values using the two grips: the TE mean (SD) was 14.2 (7.0) cm H2O, and the EC mean (SD) was 13.5 (9.0) cm H2O (P = 0.49).

CONCLUSIONS: The TE facemask ventilation grip results in improved ventilation over the EC grip in the hands of novice providers.

RSI haemodynamics in the field

May 18, 2013 by  
Filed under All Updates, EMS, ICU, Kids, Resus, Trauma

intubated-prehosp-vol-iconThe noxious stimulus of laryngoscopy & tracheal intubation can precipitate hypertension, tachycardia, and intracranial pressure elevation, risking exacerbation of brain injury or haemorrhage. Physicians from an English Helicopter Emergency Medical Service examined the response of heart rate and blood pressure to prehospital rapid sequence intubation (RSI). While a retrospective study, the haemodynamic data were prospectively recorded and documented using standard monitor printouts, and time of intubation could be accurately determined by the onset of capnography recordings. Their standardised system documents blood pressure recordings every three minutes. Etomidate and suxamethonium were used for RSI.

They report their findings:


A hypertensive response occurred in 79% (70/89) of patients. MAP exceeded the upper limit of estimated intact cerebral autoregulation (150 mmHg) in 18% (16/89) of cases and 9% (8/89) of patients had a greater than 100% increase in MAP and/or SBP. A single hypotensive response occurred. A tachycardic response occurred in 58% (64/110) of patients and bradycardia was induced in one.

Of note, 97 of the 115 patients had injuries that included head trauma.

The authors note that opioids are often co-administered during in-hospital RSI and that this may offset the haemodynamic stimulation, while possible increasing the complexity of the procedure in the prehospital environment. They have modified their pre-hospital anaesthesia standard operating procedure to include the use of an opioid and will report the associated outcomes and complication rates ‘in due course’.

This is interesting and important stuff, and something we should all be looking at in our respective prehospital critical care services.

The haemodynamic response to pre-hospital RSI in injured patients
Injury. 2013 May;44(5):618-23


BACKGROUND: Laryngoscopy and tracheal intubation provoke a marked sympathetic response, potentially harmful in patients with cerebral or cardiovascular pathology or haemorrhage. Standard pre-hospital rapid sequence induction of anaesthesia (RSI) does not incorporate agents that attenuate this response. It is not known if a clinically significant response occurs following pre-hospital RSI or what proportion of injured patients requiring the intervention are potentially at risk in this setting.

METHODS: We performed a retrospective analysis of 115 consecutive pre-hospital RSI’s performed on trauma patients in a physician-led Helicopter Emergency Medical Service. Primary outcome was the acute haemodynamic response to the procedure. A clinically significant response was defined as a greater than 20% change from baseline recordings during laryngoscopy and intubation.

RESULTS: Laryngoscopy and intubation provoked a hypertensive response in 79% of cases. Almost one-in-ten patients experienced a greater than 100% increase in mean arterial pressure (MAP) and/or systolic blood pressure (SBP). The mean (95% CI) increase in SBP was 41(31-51) mmHg and MAP was 30(23-37) mmHg. Conditions leaving the patient vulnerable to secondary injury from a hypertensive response were common.

CONCLUSIONS: Laryngoscopy and tracheal intubation, following a standard pre-hospital RSI, commonly induced a clinically significant hypertensive response in the trauma patients studied. We believe that, although this technique is effective in securing the pre-hospital trauma airway, it is poor at attenuating adverse physiological effects that may be detrimental in this patient group.

Awake intubation

May 14, 2013 by  
Filed under All Updates, EMS, ICU, Resus

I had some fun today getting intubated.

We used the Ambu aScope 2 and the Greater Sydney Area HEMS equipment and approach to airway management. I didn’t receive an antisialogogue or any analgesia or sedation.

The big learning point for me was how hard it was to anaesthetise the posterior part of my nasal cavity and nasopharynx. I thought the worst part would be any stimulation of my vocal cords or trachea with lidocaine or instrumentation, but this really was fine. Nebulised 2% lidocaine (the strongest concentration we have), atomised lidocaine (using a mucosal atomiser), and co-phenylcaine spray weren’t sufficient. I can see why people use pastes or gel to maintain mucosal contact while the lidocaine takes effect, but we don’t have those (yet). The best solution came from hooking up oxygen tubing to an iv cannula via a three way tap. Oxygen was run through at 2 l/min and lidocaine injected via the the three way tap. This enabled an atomised spray to be directed right onto the area concerned, and made the insertion of the nasotracheal tube more tolerable – although still unpleasant.

crazed-nutter-sm

The fact I could be intubated awake with reasonable topicalisation suggests most patients should tolerate it perhaps after even an analgesic dose of ketamine, eg. 30-40 mg in an adult. I suspect full dissocation would not be required, which is good for cooperation (“stick your tongue out sir”). I appreciate there are better agents, such as remifentanil or dexmedetomidine, but my area of interest is the retrieval setting – where I have neither the luxury of using these agents nor that of calling for anaesthetic back up.

Thanks to HEMS physicians Emily Stimson, Nirosha De Zoysa, Felicity Day, Chloe Tetlow, and Fergal McCourt for making it fun and safe.

Here’s the video:

Twitter has been helpful in gathering some advice, particularly from @DocJohnHinds:

Difficult intubation on ICU

May 12, 2013 by  
Filed under All Updates, ICU

icu-intub-iconA score to predict difficulty of intubation in ICU patients underwent derivation and validation in French ICUs. The main predictors included Mallampati score III or IV, obstructive sleep apnoea syndrome, reduced mobility of cervical spine, limited mouth opening, severe hypoxia, coma, and where the operator was a nonanesthesiologist.

The striking thing is the overall rate of difficult intubations, defined as three or more laryngoscopy attempts or taking over 10 minutes using conventional laryngoscopy(!) and the high rate of severe complications.

The incidence of difficult intubation was 11.3% (113 of 1,000 intubation procedures) in the original cohort and 8% (32 of 400 intubation procedures) in the validation cohort.

In the development cohort, overall complications occurred in 437 of 1,000 intubation procedures (43.7%), with 381 (38.1%) severe complications (26 cardiac arrests, 2.6%; five deaths, 0.5%; 274 severe collapses, 27.4%; 155 severe hypoxemia, 15.5%) and 112 (11.2%) moderate complications (15 agitations, 1.5%; 32 cardiac arrhythmias, 3.2%; 23 aspirations, 2.3%; 48 esophageal intubations, 4.8%; six dental injuries, 0.6%).

There is no comment on incidence of propofol use for induction; I was tempted to speculate whether it was implicated in any of the cardiac arrests – something we observe time and again in the critically ill – but the authors state: “The drugs used for intubation, in particular neuromuscular blockers, did not differ between groups… However, midazolam use was more frequent in case of difficult intubation.

Capnography was used only in 46% of intubations, and there was no mention of checklist use. It is fascinating how some aspects of airway management that might be considered minimum and basic safety standards in some practice settings are not yet routine in other specialties or locations.

An interesting study, from which one of the take home messages for me has to be a resounding ‘Yikes!’.

Early Identification of Patients at Risk for Difficult Intubation in the Intensive Care Unit
Am J Respir Crit Care Med. 2013 Apr 15;187(8):832-9


Rationale: Difficult intubation in the intensive care unit (ICU) is a challenging issue.

Objectives: To develop and validate a simplified score for identifying patients with difficult intubation in the ICU and to report related complications.

Methods: Data collected in a prospective multicenter study from 1,000 consecutive intubations from 42 ICUs were used to develop a simplified score of difficult intubation, which was then validated externally in 400 consecutive intubation procedures from 18 other ICUs and internally by bootstrap on 1,000 iterations.

Measurements and Main Results: In multivariate analysis, the main predictors of difficult intubation (incidence = 11.3%) were related to patient (Mallampati score III or IV, obstructive sleep apnea syndrome, reduced mobility of cervical spine, limited mouth opening); pathology (severe hypoxia, coma); and operator (nonanesthesiologist). From the β parameter, a seven-item simplified score (MACOCHA score) was built, with an area under the curve (AUC) of 0.89 (95% confidence interval [CI], 0.85-0.94). In the validation cohort (prevalence of difficult intubation = 8%), the AUC was 0.86 (95% CI, 0.76-0.96), with a sensitivity of 73%, a specificity of 89%, a negative predictive value of 98%, and a positive predictive value of 36%. After internal validation by bootstrap, the AUC was 0.89 (95% CI, 0.86-0.93). Severe life-threatening events (severe hypoxia, collapse, cardiac arrest, or death) occurred in 38% of the 1,000 cases. Patients with difficult intubation (n = 113) had significantly higher severe life-threatening complications than those who had a nondifficult intubation (51% vs. 36%; P < 0.0001).

Conclusions: Difficult intubation in the ICU is strongly associated with severe life-threatening complications. A simple score including seven clinical items discriminates difficult and nondifficult intubation in the ICU.

Cricoid can worsen VL View

April 12, 2013 by  
Filed under All Updates, ICU, Resus

It is known that cricoid pressure can hinder laryngoscopic view of the cords during direct laryngoscopy. Using a Pentax-AWS Video laryngoscope, these authors have demonstrated that cricoid pressure can also worsen glottic view during video laryngoscopy.

Videographic Analysis of Glottic View With Increasing Cricoid Pressure Force
Ann Emerg Med. 2013 Apr;61(4):407-13


BACKGROUND:Cricoid pressure may negatively affect laryngeal view and compromise airway patency, according to previous studies of direct laryngoscopy, endoscopy, and radiologic imaging. In this study, we assess the effect of cricoid pressure on laryngeal view with a video laryngoscope, the Pentax-AWS.

METHODS: This cross-sectional survey involved 50 American Society of Anesthesiologists status I and II patients who were scheduled to undergo elective surgery. The force measurement sensor for cricoid pressure and the video recording system using a Pentax-AWS video laryngoscope were newly developed by the authors. After force and video were recorded simultaneously, 11 still images were selected per 5-N (Newton; 1 N = 1 kg·m·s(-2)) increments, from 0 N to 50 N for each patient. The effect of cricoid pressure was assessed by relative percentage compared with the number of pixels on an image at 0 N.

RESULTS: Compared with zero cricoid pressure, the median percentage of glottic view visible was 89.5% (interquartile range [IQR] 64.2% to 117.1%) at 10 N, 83.2% (IQR 44.2% to 113.7%) at 20 N, 76.4% (IQR 34.1% to 109.1%) at 30 N, 51.0% (IQR 21.8% to 104.2%) at 40 N, and 47.6% (IQR 15.2% to 107.4%) at 50 N. The number of subjects who showed unworsened views was 20 (40%) at 10 N, 17 (34%) at 20 and 30 N, and 13 (26%) at 40 and 50 N.

CONCLUSION: Cricoid pressure application with increasing force resulted in a worse glottic view, as examined with the Pentax-AWS Video laryngoscope. There is much individual difference in the degree of change, even with the same force. Clinicians should be aware that cricoid pressure affects laryngeal view with the Pentax-AWS and likely other video laryngoscopes.

Next Page »