Breaking with tradition in paediatric RSI

April 8, 2014 by  
Filed under All Updates, EMS, ICU, Kids, Resus

‘Traditional’ rapid sequence induction of anaesthesia is often described with inclusion of cricoid pressure and the strict omission of any artifical ventilation between paralytic drug administration and insertion of the tracheal tube. These measures are aimed at preventing pulmonary aspiration of gastric contents although there is no convincing evidence base to support that. However it is known that cricoid pressure can worsen laryngoscopic view and can occlude the paediatric airway. We also know that children desaturate quickly after the onset of apnoea, and although apnoeic diffusion oxygenation via nasal cannula can prevent or delay that, in some cases it may be preferable to bag-mask ventilate the patient while awaiting full muscle relaxation for laryngoscopy.

A Swiss study looked at 1001 children undergoing RSI for non-cardiac surgery. They used a ‘controlled rapid sequence induction and intubation (cRSII)’ approach for children assumed to have full stomachs. This procedure resembled RSI the way it is currently done in many modern critical care settings, including the retrieval service I work for:

  • No cricoid pressure
  • Ketamine for induction if haemodynamically unstable
  • A non-depolarising neuromuscular blocker rather than succinylcholine
  • No cricoid pressure
  • Gentle facemask ventilation to maintain oxygenation until intubation conditions achieved
  • Intubation with a cuffed tracheal tube
  • Still no cricoid pressure

The authors comment:

The main finding was that cRSII demonstrated a considerably lower incidence of oxygen desaturation and consecutive hemodynamic adverse events during anesthesia induction than shown by a previous study on classic RSII in children. Furthermore, there was no incidence of pulmonary aspiration during induction, laryngoscopy, and further course of anesthesia.

Looks like more dogma has been lysed, and this study supports the current trajectory away from traditional teaching towards an approach more suitable for critically ill patients.

Controlled rapid sequence induction and intubation – an analysis of 1001 children
Paediatr Anaesth. 2013 Aug;23(8):734-40


BACKGROUND: Classic rapid sequence induction puts pediatric patients at risk of cardiorespiratory deterioration and traumatic intubation due to their reduced apnea tolerance and related shortened intubation time. A ‘controlled’ rapid sequence induction and intubation technique (cRSII) with gentle facemask ventilation prior to intubation may be a safer and more appropriate approach in pediatric patients. The aim of this study was to analyze the benefits and complications of cRSII in a large cohort.

METHODS: Retrospective cohort analysis of all patients undergoing cRSII according to a standardized institutional protocol between 2007 and 2011 in a tertiary pediatric hospital. By means of an electronic patient data management system, vital sign data were reviewed for cardiorespiratory parameters, intubation conditions, general adverse respiratory events, and general anesthesia parameters.

RESULTS: A total of 1001 patients with cRSII were analyzed. Moderate hypoxemia (SpO2 80-89%) during cRSII occurred in 0.5% (n = 5) and severe hypoxemia (SpO2 <80%) in 0.3% of patients (n = 3). None of these patients developed bradycardia or hypotension. Overall, one single gastric regurgitation was observed (0.1%), but no pulmonary aspiration could be detected. Intubation was documented as ‘difficult’ in two patients with expected (0.2%) and in three patients with unexpected difficult intubation (0.3%). The further course of anesthesia as well as respiratory conditions after extubation did not reveal evidence of ‘silent aspiration’ during cRSII.

CONCLUSION: Controlled RSII with gentle facemask ventilation prior to intubation supports stable cardiorespiratory conditions for securing the airway in children with an expected or suspected full stomach. Pulmonary aspiration does not seem to be significantly increased.

Atropine for Paediatric RSI?

April 5, 2014 by  
Filed under All Updates, EMS, ICU, Kids, Resus

Comments Off

paedRSIdrugiconIn some areas it has been traditional to pre-medicate or co-medicate with atropine when intubating infants and children, despite a lack of any evidence showing benefit. It is apparently still in the American Pediatric Advanced Life Support (PALS) Provider Manual when age is less than 1 year or age is 1–5 years and receiving succinylcholine. However it is not recommended with rapid sequence intubation in the British and Australasian Advanced Paediatric Life Support manual and course.

A French non-randomised observational study compares intubations with and without atropine in the neonatal and paediatric critical care setting. Atropine use was associated with significant acceleration of heart rate, and no atropine use was associated with a higher incidence of new dysrhythmia, the most common being junctional rhythm, but with none appearing to be clinically significant.

The incidence of the most important peri-intubation cause of bradycardia – hypoxia – is not reported. It is also not clear how many intubation attempts were required. The authors admit:

it is not possible using our methodology to deduce whether bradycardia was due to hypoxia, laryngoscopy, or sedation drugs.

Actual rapid sequence was rarely employed – their use of muscle relaxants was low – making this difficult to extrapolate to modern emergency medicine / critical care practice.

My take home message here is that this study provides no argument whatsoever for the addition of atropine in routine RSI in the critically ill child. Why complicate a procedure with an unnecessary tachycardia-causing drug when the focus should be on no desat / no hypotension / first look laryngoscopy?

The Effect of Atropine on Rhythm and Conduction Disturbances During 322 Critical Care Intubations
Pediatr Crit Care Med. 2013 Jul;14(6):e289-97


OBJECTIVES: Our objectives were to describe the prevalence of arrhythmia and conduction abnormalities before critical care intubation and to test the hypothesis that atropine had no effect on their prevalence during intubation.

DESIGN: Prospective, observational study.

SETTING: PICU and pediatric/neonatal intensive care transport.

SUBJECTS: All children of age less than 8 years intubated September 2007-2009. Subgroups of intubations with and without atropine were analyzed.

INTERVENTION: None.

MEASUREMENT AND MAIN RESULTS: A total of 414 intubations were performed in the study period of which 327 were available for analysis (79%). Five children (1.5%) had arrhythmias prior to intubation and were excluded from the atropine analysis. Atropine was used in 47% (152/322) of intubations and resulted in significant acceleration of heart rate without provoking ventricular arrhythmias. New arrhythmias during intubation were related to bradycardia and were less common with atropine use (odds ratio, 0.14 [95% CI, 0.06-0.35], p < 0.001). The most common new arrhythmia was junctional rhythm. Acute bundle branch block was observed during three intubations; one Mobitz type 2 rhythm and five ventricular escape rhythms occurred in the no-atropine group (n = 170). Only one ventricular escape rhythm occurred in the atropine group (n = 152) in a child with an abnormal heart. One child died during intubation who had not received atropine.

CONCLUSIONS: Atropine significantly reduced the prevalence of new arrhythmias during intubation particularly for children over 1 month of age, did not convert sinus tachycardia to ventricular tachycardia or fibrillation, and may contribute to the safety of intubation.

Etomidate – there is always a downside

January 14, 2014 by  
Filed under All Updates, ICU

By Norwegian intensivist/anaesthetist/HEMS Physician Dr Per Bredmose.

[Warning – Rant level: Viking]

Etomidate has for a long time been known in some countries as the “drug of choice” for RSI in unstable/fragile patients. This is due to the fact that induction with etomidate is fairly cardiovascularly stable. However, there is a down side: a subsequent suppression of adrenal function. This was initially discovered after etomidate was used for sedation infusions on ICU.

It has for a long time been debated whether this is a side effect with clinical implications after a single dose induction… and yes it has.

A recent Japanese study demonstrates this(1). This is a large propensity based study. Now, propensity based statistics are pretty complex to explain. In short, it is an advanced method to strengthen the statistics when comparing groups in non-cross over studies.

In this study 2616 patients receiving etomidate for induction and a volatile agent for maintenance are included.
This showed an increased OR for 30-days mortality with a factor of 2.5 and 1.5 times greater chance for a major cardiovascular event in hospital. Interestingly enough, there were no significant differences in either perioperative vasopressor use or infections complications during hospital stay.

What does this mean?
In my mind and experience, it strengthens the fact that there is no wonder drug. And also that there seems to be a reason for why etomidate is de-registered in many countries.
Also, it tells me that for a safe prehospital RSI we need physicians capable of clinical judgment and “decision making” to tailor an (any) induction agent to the specific individual patient. In my mind, there is no room for an etomidate-only (dose / weight) induction protocol!

1. Komatsu R, You J, Mascha EJ, Sessler DI, Kasuya Y, Turan A.
Anesthetic induction with etomidate, rather than propofol, is associated with increased 30-day mortality and cardiovascular morbidity after noncardiac surgery.
Anesth Analg. 2013 Dec;117(6):1329-37

Hyperchloraemia and mortality

November 10, 2013 by  
Filed under All Updates, EMS, ICU, Resus

Comments Off

Here’s something to add to the pile of data cautioning us to think before we acidify patients with saline. A study in Anesthesia and Analgesia using propensity matching provides retrospective evidence that patients who developed hyperchloremia after noncardiac surgery had worse outcomes.

For more information on why saline isn’t ‘normal’ see: What’s with all the chloride? An assault on salt

Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study
Anesth Analg. 2013 Aug;117(2):412-21


BACKGROUND: The use of normal saline is associated with hyperchloremic metabolic acidosis. In this study, we sought to determine the incidence of acute postoperative hyperchloremia (serum chloride >110 mEq/L) and whether this electrolyte disturbance is associated with an increase in length of hospital stay, morbidity, or 30-day postoperative mortality.

METHODS: Data were retrospectively collected on consecutive adult patients (>18 years of age) who underwent inpatient, noncardiac, nontransplant surgery between January 1, 2003 and December 31, 2008. The impact of postoperative hyperchloremia on patient morbidity and length of hospital stay was examined using propensity-matched and logistic multivariable analysis.

RESULTS: The dataset consisted of 22,851 surgical patients with normal preoperative serum chloride concentration and renal function. Acute postoperative hyperchloremia (serum chloride >110 mmol/L) is quite common, with an incidence of 22%. Patients were propensity-matched based on their likelihood to develop acute postoperative hyperchloremia. Of the 4955 patients with hyperchloremia after surgery, 4266 (85%) patients were matched to patients who had normal serum chloride levels after surgery. These 2 groups were well balanced with respect to all variables collected. The hyperchloremic group was at increased risk of mortality at 30 days postoperatively (3.0% vs 1.9%; odds ratio = 1.58; 95% confidence interval, 1.25-1.98) (relative risk 1.6 or risk increase of 1.1%) and had a longer hospital stay (7.0 days [interquartile range 4.1-12.3] compared with 6.3 [interquartile range 4.0-11.3]) than patients with normal postoperative serum chloride levels. Patients with postoperative hyperchloremia were more likely to have postoperative renal dysfunction. Using all preoperative variables and measured outcome variables in a logistic regression analysis, hyperchloremia remained an independent predictor of 30-day mortality with an odds ratio of 2.05 (95% confidence interval, 1.62-2.59).

CONCLUSION: This retrospective cohort trial demonstrates an association between hyperchloremia and poor postoperative outcome. Additional studies are required to demonstrate a causal relationship between these variables.

Xenon – no bull?

August 31, 2013 by  
Filed under All Updates, ICU

Comments Off

Xenon, an inert ‘noble’ gas with proven anaesthetic properties, has possible neuroprotective properties and appears to be also cardioprotective in this small study of post-cardiac arrest patients. Its high viscosity affects airway resistance, resulting in higher peak pressures and the need for a strategy to avoid gas trapping (ie. longer expiratory times as with asthma). Apparently it’s expensive, but these results suggest further study is warranted.

Feasibility and Cardiac Safety of Inhaled Xenon in Combination With Therapeutic Hypothermia Following Out-of-Hospital Cardiac Arrest
Crit Care Med. 2013 Sep;41(9):2116-24


OBJECTIVES: Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients.

DESIGN: An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892).

SETTING: A multipurpose ICU in university hospital.

PATIENTS: Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm.

INTERVENTIONS: Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n = 18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon + mild therapeutic hypothermia group, n = 18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n = 17; Xenon + mild therapeutic hypothermia group, n = 16).

MEASUREMENTS AND MAIN RESULTS: Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group = 5.30 mg vs Xenon + mild therapeutic hypothermia group = 2.95 mg, p = 0.06). Heart rate was significantly lower in Xenon + mild therapeutic hypothermia patients during hypothermia (p = 0.04). Postarrival incremental change in troponin-T at 72 hours was significantly less in the Xenon + mild therapeutic hypothermia group (p = 0.04).

CONCLUSIONS: Xenon treatment in combination with hypothermia is feasible and has favorable cardiac features in survivors of out-of-hospital cardiac arrest.

Cricoid can worsen VL View

April 12, 2013 by  
Filed under All Updates, ICU, Resus

It is known that cricoid pressure can hinder laryngoscopic view of the cords during direct laryngoscopy. Using a Pentax-AWS Video laryngoscope, these authors have demonstrated that cricoid pressure can also worsen glottic view during video laryngoscopy.

Videographic Analysis of Glottic View With Increasing Cricoid Pressure Force
Ann Emerg Med. 2013 Apr;61(4):407-13


BACKGROUND:Cricoid pressure may negatively affect laryngeal view and compromise airway patency, according to previous studies of direct laryngoscopy, endoscopy, and radiologic imaging. In this study, we assess the effect of cricoid pressure on laryngeal view with a video laryngoscope, the Pentax-AWS.

METHODS: This cross-sectional survey involved 50 American Society of Anesthesiologists status I and II patients who were scheduled to undergo elective surgery. The force measurement sensor for cricoid pressure and the video recording system using a Pentax-AWS video laryngoscope were newly developed by the authors. After force and video were recorded simultaneously, 11 still images were selected per 5-N (Newton; 1 N = 1 kg·m·s(-2)) increments, from 0 N to 50 N for each patient. The effect of cricoid pressure was assessed by relative percentage compared with the number of pixels on an image at 0 N.

RESULTS: Compared with zero cricoid pressure, the median percentage of glottic view visible was 89.5% (interquartile range [IQR] 64.2% to 117.1%) at 10 N, 83.2% (IQR 44.2% to 113.7%) at 20 N, 76.4% (IQR 34.1% to 109.1%) at 30 N, 51.0% (IQR 21.8% to 104.2%) at 40 N, and 47.6% (IQR 15.2% to 107.4%) at 50 N. The number of subjects who showed unworsened views was 20 (40%) at 10 N, 17 (34%) at 20 and 30 N, and 13 (26%) at 40 and 50 N.

CONCLUSION: Cricoid pressure application with increasing force resulted in a worse glottic view, as examined with the Pentax-AWS Video laryngoscope. There is much individual difference in the degree of change, even with the same force. Clinicians should be aware that cricoid pressure affects laryngeal view with the Pentax-AWS and likely other video laryngoscopes.

Updated Difficult Airway Guidelines

February 14, 2013 by  
Filed under All Updates, Guidelines, ICU, Resus

Comments Off

diffairwayThe American Society of Anesthesiologists has published an update to its Practice Guidelines for Management of the Difficult Airway. You can get the full PDF for free. I’m linking to it for interest, but do not expect to find anything groundbreaking for the management of critical patients.

Practice Guidelines for Management of the Difficult Airway: An Updated Report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway
Anesthesiology 2013;118:251-70

Lifting the Fogg on ED Intubaton

January 1, 2013 by  
Filed under All Updates, ICU, Resus

Fellow retrieval specialist and Royal North Shore Hospital emergency physician Dr Toby Fogg and coauthors have published their audit of intubations in an Australian Emergency Department(1). More important than the results themselves is that the process of monitoring ones practice inevitably leads to improvements. For example, at Toby’s institution an intubation checklist has been introduced since the audit began. Other Australasian EDs are encouraged to participate using the free resources at airwayregistry.org.au.

Recently we have also seen the publication of Korean registry data on paediatric intubations performed in 13 academic EDs over 5 years(2), in which first pass success rates (overall 67.6%) were higher with emergency physicians compared with paediatricians. Interestingly, a rapid sequence intubation technique was only used in 22.4% of intubations, which was more likely to be used by emergency physicians and was associated with a greater likelihood of first pass success.

This relatively low first pass success rate is reminiscent of the American study published in September(3) which raised some eyebrows with its 52% first pass intubation success rates in a paediatric ED, and which also showed that attending-level providers were 10 times more likely to be successful on the first attempt than all trainees combined. Possible reasons for such a low first pass success rate compared with adult registry data include the rigorous video analysis method used, or perhaps more likely that paediatric emergency subspecialists are exposed to fewer critical procedures, resuscitations, and intubations than their general emergency medicine counterparts(4).

As a specialty we must continue to seek to do better, and I salute all these brave authors who are telling it like it is. Particularly with children, whose airways are relatively easy, we have to develop the training, preparation, supervision, monitoring and feedback to aim for as high a success rate as possible.

Study authors Toby Fogg and Nick Annesley demonstrate the 'Happiness Triad'

1. Prospective observational study of the practice of endotracheal intubation in the emergency department of a tertiary hospital in Sydney, Australia
Emerg Med Australas. 2012 Dec;24(6):617-24


OBJECTIVE: To describe the practice of endotracheal intubation in the ED of a tertiary hospital in Australia, with particular emphasis on the indication, staff seniority, technique, number of attempts required and the rate of complications.

METHODS: A prospective observational study.

RESULTS: Two hundred and ninety-five intubations occurred in 18 months. Trauma was the indication for intubation in 30.5% (95% CI 25.3-36.0) and medical conditions in 69.5% (95% CI 64.0-74.5). Emergency physicians were team leaders in 69.5% (95% CI 64.0-74.5), whereas ED registrars or senior Resident Medical Officers made the first attempt at intubation in 88.1% (95% CI 83.9-91.3). Difficult laryngoscopy occurred in 24.0% (95% CI 19.5-29.3) of first attempts, whereas first pass success occurred in 83.4% (95% CI 78.7-87.2). A difficult intubation occurred in 3.4% (95% CI 1.9-6.1) and all patients were intubated orally in five or less attempts. A bougie was used in 30.9% (95% CI 25.8-36.5) of first attempts, whereas a stylet in 37.5% (95% CI 32.1-43.3). Complications occurred in 29.0% (95% CI 23.5-34.1) of the patients, with desaturation the commonest in 15.7% (95% CI 11.9-20.5). Cardiac arrest occurred in 2.2% (95% CI 0.9-4.4) after intubation. No surgical airways were undertaken.

CONCLUSION: Although the majority of results are comparable with overseas data, the rates of difficult laryngoscopy and desaturation are higher than previously reported. We feel that this data has highlighted the need for practice improvement within our department and we would encourage all those who undertake emergent airway management to audit their own practice of this high-risk procedure.

2. The factors associated with successful paediatric endotracheal intubation on the first attempt in emergency departments: a 13-emergency-department registry study
Resuscitation. 2012 Nov;83(11):1363-8


BACKGROUND: We investigated which factors are associated with successful paediatric endotracheal intubation (ETI) on the first attempt in emergency department (EDs) from multicentre emergency airway registry data.

METHODS: We created a multicentre registry of intubations at 13 EDs and performed surveillance over 5 years. Each intubator filled out a data form after an intubation. We defined “paediatric patients” as patients younger than 10 years of age. We assessed the specialty and level of training of intubator, the method, the equipment, and the associated adverse events. We analysed the intubation success rates on the first attempt (first-pass success, FPS) based on these variables.

RESULTS: A total of 430 ETIs were performed on 281 children seen in the ED. The overall FPS rate was 67.6%, but emergency medicine (EM) physicians showed a significantly greater success rate of 74.4%. In the logistic regression analysis, the intubator’s specialty was the only independent predictive factor for paediatric FPS. In the subgroup analysis, the EM physicians used the rapid sequence intubation/intubation (RSI) method and Macintosh laryngoscope more frequently than physicians of other specialties. ETI-related adverse events occurred in 21 (7.2%) out of the 281 cases. The most common adverse event in the FPS group was mainstem bronchus intubation, and vomiting was the most common event in the non-FPS group. The incidence of adverse events was lower in the FPS group than in the non-FPS group, but this difference was not statistically significant.

CONCLUSIONS: The intubator’s specialty was the major factor associated with FPS in emergency department paediatric ETI, The overall ETI FPS rate among paediatric patients was 67.6%, but the EM physicians had a FPS rate of 74.4%. A well structured airway skill training program, and more actively using the RSI method are important and this could explain this differences.

3.Rapid sequence intubation for pediatric emergency patients: higher frequency of failed attempts and adverse effects found by video review.
Ann Emerg Med. 2012 Sep;60(3):251-9


STUDY OBJECTIVE: Using video review, we seek to determine the frequencies of first-attempt success and adverse effects during rapid sequence intubation (RSI) in a large, tertiary care, pediatric emergency department (ED).

METHODS: We conducted a retrospective study of children undergoing RSI in the ED of a pediatric institution. Data were collected from preexisting video and written records of care provided. The primary outcome was successful tracheal intubation on the first attempt at laryngoscopy. The secondary outcome was the occurrence of any adverse effect during RSI, including episodes of physiologic deterioration. We collected time data from the RSI process by using video review. We explored the association between physician type and first-attempt success.

RESULTS: We obtained complete records for 114 of 123 (93%) children who underwent RSI in the ED during 12 months. Median age was 2.4 years, and 89 (78%) were medical resuscitations. Of the 114 subjects, 59 (52%) were tracheally intubated on the first attempt. Seventy subjects (61%) had 1 or more adverse effects during RSI; 38 (33%) experienced oxyhemoglobin desaturation and 2 required cardiopulmonary resuscitation after physiologic deterioration. Fewer adverse effects were documented in the written records than were observed on video review. The median time from induction through final endotracheal tube placement was 3 minutes. After adjusting for patient characteristics and illness severity, attending-level providers were 10 times more likely to be successful on the first attempt than all trainees combined.

CONCLUSION: Video review of RSI revealed that first-attempt failure and adverse effects were much more common than previously reported for children in an ED.

4. A is for airway: a pediatric emergency department challenge.
Ann Emerg Med. 2012 Sep;60(3):261-3

Reassurance: difficult laryngoscopy in children remains rare

December 2, 2012 by  
Filed under All Updates, EMS, ICU, Kids, Resus

I was taught a useful principle by a paediatric anaesthetist 10 years ago which has proven true in my experience and has contributed to keeping me calm when intubating sick kids. Unlike adults, in whom difficulty in intubation can often be unexpected, the vast majority of normal looking children are easy to intubate, and the ones who are difficult usually have obvious indicators such as dysmorphism.

This appears to be supported by recent evidence: in a large retrospective series of 11.219 anaesthesia patients, the overall incidence of difficult laryngoscopy [Cormack and Lehane (CML) grade III and IV] was only 1.35%, although was much higher in infants less than one year compared with older children. This low percentage is in the same ball park as two other paediatric studies. Besides younger age, their database suggested underweight, ASA III and IV physical status and, if obtainable, Mallampati III and IV findings as predictors for difficult laryngoscopy. The authors point out:

…the oromaxillofacial surgery department with a high proportion of cleft palate interventions and pediatric cardiac surgery contributed substantially to the total number of difficult laryngoscopies. In patients undergoing pediatric cardiac surgery, a possible explanation for the higher incidence of CML III/IV findings might be that some congenital heart defects are associated with chromosomal anomalies like microdeletion 22q11.2 syndrome. This syndrome is also associated with extracardiac anomalies like cranio-facial dysmorphism

Take home message: As a very rough rule of thumb to illustrate the difference between the ease/difficulty of laryngoscopy between adults and kids, I think it’s fair to say grade III or IV views occur in about 10% of adults but only about 1% of children.

Incidence and predictors of difficult laryngoscopy in 11.219 pediatric anesthesia procedures
Paediatr Anaesth. 2012 Aug;22(8):729-36


OBJECTIVE: Difficult laryngoscopy in pediatric patients undergoing anesthesia.

AIM: This retrospective analysis was conducted to investigate incidence and predictors of difficult laryngoscopy in a large cohort of pediatric patients receiving general anesthesia with endotracheal intubation.

BACKGROUND: Young age and craniofacial dysmorphy are predictors for the difficult pediatric airway and difficult laryngoscopy. For difficult laryngoscopy, other general predictors are not yet described.

METHODS: Retrospectively, from a 5-year period, data from 11.219 general anesthesia procedures in pediatric patients with endotracheal intubation using age-adapted Macintosh blades in a single center (university hospital) were analyzed statistically.

RESULTS: The overall incidence of difficult laryngoscopy [Cormack and Lehane (CML) grade III and IV] was 1.35%. In patients younger than 1 year, the incidence of CML III or IV was significantly higher than in the older patients (4.7% vs 0.7%). ASA Physical Status III and IV, a higher Mallampati Score (III and IV) and a low BMI were all associated (P < 0.05) with difficult laryngoscopy. Patients undergoing oromaxillofacial surgery and cardiac surgery showed a significantly higher rate of CML III/IV findings.

CONCLUSION: The general incidence of difficult laryngoscopy in pediatric anesthesia is lower than in adults. Our results show that the risk of difficult laryngoscopy is much higher in patients below 1 year of age, in underweight patients and in ASA III and IV patients. The underlying disease might also contribute to the risk. If the Mallampati score could be obtained, prediction of difficult laryngoscopy seems to be reliable. Our data support the existing recommendations for a specialized anesthesiological team to provide safe anesthesia for infants and neonates.

Transtracheal airways in kids. Well, pigs’ kids anyway

December 1, 2012 by  
Filed under All Updates, EMS, ICU, Kids, Resus, Trauma

Comments Off

Ever had to do a surgical airway in a child? Thought not. They’re pretty rare. Bill Heegaard MD from Henepin County Medical Center taught me a few approaches (with the help of an anaesthetised rabbit) which really got me thinking. It’s something I’d often trained for in my internal simulator, and I even keep the equipment for it in my house (listen out for an upcoming podcast on that). Research and experience has demonstrated that open surgical airway techniques are more reliable than transtracheal needle techniques in adults, but what about kids, in whom traditional teaching cautions against open techniques?

Australian investigators who were experienced airway proceduralists evaluated transtracheal needle techniques using a rabbit model (an excellent model for the infant airway). Their success rate was only 60% and they perforated the posterior tracheal wall in 42% of attempts. Of 13 attempts to insert a dedicated paediatric tracheotomy device, the Quicktrach Child, none were successful(1) (they did not use the Quicktrach Infant model as it is not available in Australia).

Danish investigators used fresh piglet cadavers weighing around 8 kg to assess two transtracheal cannulas, in which they achieved success rates of 65.6% and 68.8%(2). There was also a very high rate of posterior tracheal wall perforation. Using an open surgical tracheostomy technique, they were successful in 97% of attempts. These were also experienced operators, with a median anaesthetic experience of 12.5 years.

Their tracheotomy technique was nice and simple, and used just a scalpel, scissors, and surgical towel clips. Here’s their technique:

Simple tracheotomy procedure described by Holm-Knudsen et al
  1. Identify larynx and proximal trachea by palpation
  2. Vertical incision through the skin and subcutaneous tissue from the upper part of larynx to the sternal notch
  3. Grasp strap muscles with two towel forceps and separate in the midline
  4. Palpate and identify the trachea (palpate rather than look for tracheal rings, as in a live patient one would expect bleeding to obscure the view)
  5. Stabilise the trachea by grasping it with a towel forceps
  6. Insert sharp tip of the scissors between two tracheal rings and lift the trachea anteriorly to avoid damage to the posterior wall
  7. Cut vertically in the midline of the trachea with the scissors – they chose to use the scissors to cut the tracheal rings to facilitate tube insertion
  8. Insert the tracheal tube

Using ultrasound and CT to evaluate comparative airway dimensions, the authors concluded that the pig model is most useful for training emergency airway management in older children aged 5–10 years.

Why were they doing a tracheotomy rather than a cricothyroidotomy? Reasons given by the authors include:

  • The infant cricothyroid membrane is very small
  • Palpation of the thyroid notch may be hindered by the overlying hyoid bone
  • The mandible may obstruct needle access to the cricothyroid membrane given the cephalad position in the neck of the infant larynx.

From an emergency medicine point of view, there are a couple of other reasons why we need to be able to access the trachea lower than the cricothyroid membrane. One is fractured larynx or other blunt or penetrating airway injury where there may be anatomical disruption at the cricothyroid level. The other situation is foreign body airway obstruction, when objects may lodge at the level of the cricoid ring which is functionally the narrowest part of the pediatric upper airway. Of course, alternative methods might be considered to remove the foreign body prior to tracheotomy, such as employing basic choking algorithms, and other techniques depending on whether you do or don’t have equipment.

Take home messages
  • Transtracheal airways in kids are so rare, we can’t avoid extrapolating animal data
  • Whichever infant or paediatric model is used, transtracheal needle techniques have a high rate of failure even by ‘experienced’ operators
  • The small size and easy compressibility of the airway probably contributes to this failure rate, including the high rate of posterior wall puncture
  • In keeping with adult audit data, open surgical techniques may have a higher success rate
  • Tracheotomy may be necessary rather than cricothyroidotomy in infants and children depending on clinical scenario and accessibility of anatomy
  • The stress and blood that is not simulated in cadaveric animal models will make open tracheotomy harder in a live patient, and so these success rates may not translate. However these factors do mean that whatever technique is used must be kept simple and should employ readily available and familiar equipment
  • Something to maintain control and anterior position of the anterior trachea wall should be used during incision and intubation of the trachea. The study reported here used towel clips; sutures around the tracheal rings may also be used (see image below)

Sutures to stabilise trachea during infant tracheotomy simulation using a rabbit model

I recommend you add ‘paediatric tracheotomy’ to the list of procedures you might need to do (if it’s not already there). Identify what equipment you would use and run the simulation in your head and in your work environment.

Have fun.

1. The ‘Can’t Intubate Can’t Oxygenate’ scenario in Pediatric Anesthesia: a comparison of different devices for needle cricothyroidotomy
Paediatr Anaesth. 2012 Dec;22(12):1155-8


BACKGROUND: Little evidence exists to guide the management of the ‘Can’t Intubate, Can’t Oxygenate’ (CICO) scenario in pediatric anesthesia.

OBJECTIVES: To compare two intravenous cannulae for ease of use, success rate and complication rate in needle tracheotomy in a postmortem animal model of the infant airway, and trial a commercially available device using the same model.

METHODS: Two experienced proceduralists repeatedly attempted cannula tracheotomy in five postmortem rabbits, alternately using 18-gauge (18G) and 14-gauge (14G) BD Insyte(™) cannulae (BD, Franklin Lakes, NJ, USA). Attempts began at the first tracheal cartilage, with subsequent attempts progressively more caudad. Success was defined as intratracheal cannula placement. In each rabbit, an attempt was then made by each proceduralist to perform a cannula tracheotomy using the Quicktrach Child(™) device (VBM Medizintechnik GmbH, Sulz am Neckar, Germany).

RESULTS: The rabbit tracheas were of similar dimensions to a human infant. 60 attempts were made at cannula tracheotomy, yielding a 60% success rate. There was no significant difference in success rate, ease of use, or complication rate between cannulae of different gauge. Successful aspiration was highly predictive (positive predictive value 97%) and both sensitive (89%) and specific (96%) for tracheal cannulation. The posterior tracheal wall was perforated in 42% of tracheal punctures. None of 13 attempts using the Quicktrach Child(™) were successful.

CONCLUSION: Cannula tracheotomy in a model comparable to the infant airway is difficult and not without complication. Cannulae of 14- and 18-gauge appear to offer similar performance. Successful aspiration is the key predictor of appropriate cannula placement. The Quicktrach Child was not used successfully in this model. Further work is required to compare possible management strategies for the CICO scenario.

2. Emergency airway access in children – transtracheal cannulas and tracheotomy assessed in a porcine model
Paediatr Anaesth. 2012 Dec;22(12):1159-65


OBJECTIVES: In the rare scenario when it is impossible to oxygenate or intubate a child, no evidence exists on what strategy to follow.

AIM: The aim of this study was to compare the time and success rate when using two different transtracheal needle techniques and also to measure the success rate and time when performing an emergency tracheotomy in a piglet cadaver model.

METHODS: In this randomized cross-over study, we included 32 anesthesiologists who each inserted two transtracheal cannulas (TTC) using a jet ventilation catheter and an intravenous catheter in a piglet model. Second, they performed an emergency tracheotomy. A maximum of 2 and 4 min were allowed for the procedures, respectively. The TTC procedures were recorded using a video scope.

RESULTS: Placement of a transtracheal cannula was successful in 65.6% and 68.8% of the attempts (P = 0.76), and the median duration of the attempts was 69 and 42 s (P = 0.32), using the jet ventilation catheter and the intravenous catheter, respectively. Complications were frequent in both groups, especially perforation of the posterior tracheal wall. Performing an emergency tracheotomy was successful in 97%, in a median of 88 s.

CONCLUSIONS: In a piglet model, we found no significant difference in success rates or time to insert a jet ventilation cannula or an intravenous catheter transtracheally, but the incidence of complications was high. In the same model, we found a 97% success rate for performing an emergency tracheotomy within 4 min with a low rate of complications.

Next Page »