London Trauma Conference Day 4

December 15, 2013 by  
Filed under All Updates, EMS, ICU, Resus, Trauma

Comments Off

London Trauma Conference Day 4 by Dr Louisa Chan

It’s the last day of the conference and new this year is the Neurotrauma Masterclass running in parallel with the main track which focuses on in-hospital care.

We heard a little from Mark Wilson yesterday. He believes we are missing a pre-hospital trick in traumatic brain injury. Early intervention is the key (he has data showing aggressive intervention for extradural haemorrhage in patients with fixed dilated pupils has good outcomes in 75%).

Today he taught us neurosurgery over lunch. If you have a spare moment over then go to his website and you too can learn how to be a brain surgeon!

Dr Gareth Davies talks about Impact Brain Apnoea. Many will not heard of this phenomenon. Clinicians rarely see patients early enough in their injury timeline to witness

Essentially this term describes the cessation of breathing after head injury. It has been described in older texts (first mentioned in 1894!) The period of apnoea increases with the severity of the injury and if non fatal will then recover to normal over a period of time. Prolonged apnoea results in hypotension.

This is a brain stem mediated effect with no structural injury.

The effect is exacerbated by alcohol and ameliorated by ventilatory support during the apnoeic phase.

Associated with this response is a catecholamine surge which exacerbates the cardiovascular collapse and he introduces the concept of Central Shock.

So how does this translate into the real world?

Well, could we be miscategorising patients that die before they reach hospital as succumbing to hypovolaemic when in fact they had central shock?

These patients essentially present with respiratory arrest, but do well with supported ventilation. Identification of these patients by emergency dispatchers with airway support could mean the difference between life and death.

Read more about this at: http://www.sciencedirect.com/science/article/pii/S0025619611642547

Prof Monty Mythen spoke on fluid management in the trauma patient after blood (not albumin, HES or colloids) and Prof Mervyn Singer explained the genetic contribution to the development of MODS after trauma.

LTC-BrohiProf Brohi gave us the lowdown on trauma laparotomies – not all are the same! With important human factors advice:

1. Task focus kills
2. Situational awareness saves lives
3. The best communication is non verbal
4. Train yourself to listen

Prof Susan Brundage is a US trauma surgeon who has been recruited into the Bart’s and the London School of Medicine and the Royal College of Surgeons of England International Masters in Trauma Sciences for her trauma expertise.

She tells us that MOOCs and FOAM are changing education. Whilst education communities are being formed, she warns of the potential pitfalls of this form of education with a proportion of participants not fully engaged.

The Masters program is growing and if you’re interested you can read more here.

This has been a full on conference, with great learning points.

Hopefully see you next year!

London Trauma Conference Day 3

December 13, 2013 by  
Filed under Acute Med, All Updates, EMS, ICU, Resus, Trauma


Dr Louisa Chan reports on Day 3 of the London Trauma Conference

There was a jam-packed line up for the Pre-hospital and Air Ambulance Day which was Co-hosted by the Norwegian Air Ambulance Foundation.
 

My highlights were:

HEMS

Dr Rasmus Hesselfeldt works in Denmark where they have a pretty good EMS system with ambulances, RRV’s and PHC doctors. Road conditions are good with the longest travel distance of 114 miles. So would the introduction of a HEMS service improve outcomes? He did an observational study looking at year of data post-trial and compared this with 5 months pre-trial. Trauma patients with ISS > 15 and medical emergencies greater than 30 min by road to the Trauma Centre (TC). Primary endpoint was time to TC, secondary outcomes were number of secondary transfers and 30 day mortality.

Results: Increase in on scene time 20 min vs 28 min, time to hospital increased but time to TC was less – 218 min vs 90 min, reduced mortality, increased direct transfer to TC and fewer secondary transfers.

Full article here: A helicopter emergency medical service may allow faster access to highly specialised care. Dan Med J. 2013 Jul;60(7):A4647

 

Airway

Prof Dan Davis ran through pre-hospital intubation. It seems that this man has spent his life trying to perfect airway management. Peter Rosen was his mentor and imprinted on him that RSI is the cornerstone of airway management.

So surely pre-hospital intubation saves lives. The evidence however begs to differ, or does it? As with all evidence we need to consider the validity of the results and luckily Prof Davis has spent a lot of time thinking through the reasons why there no evidence.

During his research he opened a huge can of worms:
1. Hyperventilation was common – any EtCO2 <30mmHg lead to a doubling in mortality.
2. First pass intubation is great, but not if you let your patient become hypoxic or hypotension or worse still both!
3. Hospital practice had similar issues.

So really the RSI processes he was looking at weren’t great.

The good news is that things have improved and he can now boast higher first pass rates and lower complication rates for his EMS system. His puts this success down to training.

 

 

AIRPORT-LTCThe AIRPORT study was discussed at last years LTC. This year we have the results. 21 HEMS services in 6 countries were involved in the data collection including GSA HEMS. The headline findings are that intubation success rates are high (98%) with a complication rate of 10-12%. The more difficult airways were seen in the non-trauma group. 28.2% patients died (mainly cardiac arrest).

 

 

Matt Thomas reported on REVIVE – a pre-hospital feasibility study looking at airway management in OHCA (I-Gel vs LMA Supreme vs standard care). It was never powered to show a difference in these groups, the main aim was to see if research in this very challenging area was possible. And the answer is YES. The paramedics involved recruited more patients than expected and stuck to the protocol (prob better that docs would have!). A randomised controlled trial to look at the I-Gel vs ETT is planned.

 

(P)REBOA

ReboaLTCFinally, Pre-hospital Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) seems eminently possible – Dr Nils Petter Oveland showed us the training manikin they developed for training. Through training on this manikin they achieved an average skin to balloon time of 3.3mins. Animal data supports this procedure as a bridge to definitive care in non compressible haemorrhage.

London HEMS will be starting (P)REBOA in the New Year.

So now it’s stand up science, I’m off for my glass of wine…………….

Check out what they’re saying about the London Trauma Conference on Twitter

Guidelines on prehospital drug-assisted LMA insertion

December 9, 2013 by  
Filed under All Updates, EMS, Guidelines, Trauma

The UK’s Faculty of Prehospital Care has published a number of consensus guidelines in this month’s EMJ

Dr Minh Le Cong‘s PHARM blog has summaries of three of them:

The final one is the most contentious: Pharmacologically assisted laryngeal mask insertion: a consensus statement(1). Here is the summary:

  1. The PALM technique is an acceptable tool for managing the prehospital airway
  2. The PALM technique is indicated in a rare set of circumstances
  3. The PALM procedure is a rescue technique
  4. The PALM procedure should be checklist driven
  5. At least a second generation SAD should be used
  6. End-tidal CO2 monitoring is mandatory
  7. No preference is expressed for any particular drug
  8. No preference is expressed for any particular dosing regime
  9. Flumazenil is highly unlikely to have a role in managing the PALM patient
  10. The PALM procedure should only be carried out by practitioners of level 7 or above competences
  11. The availability of a trained assistant, familiar with the procedure would be advantageous
  12. The training required to achieve competency in performing the PALM procedure must include in-hospital insertion of SADs, simulation training and training in the transfer of critically ill patients
  13. Data should be collected and collated at a national level for all patients who receive the PALM procedure

They qualify the first point with the statement: The consensus group felt that, in the hands of a specific set of practitioners and in certain circumstances, patients would benefit from the technique. It was recognised that pre-hospital airway management can be very challenging, and deeming the technique unacceptable could deprive patients of a potentially life saving intervention. It was felt that having another tool available to clinicians which could potentially improve patient outcome was important. This was despite the lack of a robust evidence base. It was felt that the technique is indicated in, and should be limited to, a very specific set of circumstances as described below

The publication lists some ‘Organisations represented at the consensus meeting’, which include some commercial training and equipment companies.

It also states that ‘The Royal College of Anaesthetists, although represented at the initial meeting, was unable to support the outcomes agreed by the other represented organisations.

This is a very interesting development. I can see the pros and cons of this. Since practitioners are out there doing PALM anyway, it is in the interests of patients to produce a statement that encourages monitoring, checklists, training, and data collection. To meet all the requirements, one must undergo ‘training in the transfer of critically ill patients’, which would normally necessitate more advanced airway and anaesthesia skills anyway.

A tough one – what would you want if there was no RSI capability but you were hypoxic with trismus and basic airway maneouvres were failing? An all out ban on PALM, or PALM provided by someone trained in surgical airway if it fails (as per the consensus recommendations)?

This and some of the other statements can be downloaded in full at the Faculty of Pre-hospital Care site

1. Pharmacologically assisted laryngeal mask insertion: a consensus statement
Emerg Med J. 2013 Dec;30(12):1073-5

Blood products in trauma & survivor bias

July 4, 2013 by  
Filed under All Updates, EMS, ICU, Kids, Trauma

Comments Off

Esky-label.001The observation that patients with haemorrhagic trauma in military and civilian settings do better if they receive coagulation factors and platelets is yet to be replicated in a randomised trial. It has been suggested that the effect may in part be a consequence of survivor bias – ie. that if a patient lives long enough to received some thawed fresh frozen plasma, then they were already more likely to be a survivor and therefore more survivors will be represented in the ‘FFP’ groups vs a ‘no-FFP’ comparison group.

An attempt to eliminate survivor bias was made in the PROMMTT study, which documented the timing of transfusions during active resuscitation and patient outcomes in adult trauma patients who received a transfusion of at least 1 unit of RBCs within 6 hours of admission.

Increased ratios of plasma:RBCs and platelets:RBCs were independently associated with decreased 6-hour mortality, when haemorrhagic death predominated. In the first 6 hours, patients with ratios less than 1:2 were 3 to 4 times more likely to die than patients with ratios of 1:1 or higher.

A prospective trial is underway to identify the optimal ratio of blood products, in the PROPPR study, in which 1:1:1 ratio of plasma:platelets:RBC will be compared with 1:1:2.

The Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) Study
Arch Surg. 2012 Oct 15:1-10


Objective: To relate in-hospital mortality to early transfusion of plasma and/or platelets and to time-varying plasma:red blood cell (RBC) and platelet:RBC ratios.

Design: Prospective cohort study documenting the timing of transfusions during active resuscitation and patient outcomes. Data were analyzed using time-dependent proportional hazards models.

Setting: Ten US level I trauma centers.

Patients: Adult trauma patients surviving for 30 minutes after admission who received a transfusion of at least 1 unit of RBCs within 6 hours of admission (n = 1245, the original study group) and at least 3 total units (of RBCs, plasma, or platelets) within 24 hours (n = 905, the analysis group).

Main Outcome Measure: In-hospital mortality.

Results: Plasma:RBC and platelet:RBC ratios were not constant during the first 24 hours (P < .001 for both). In a multivariable time-dependent Cox model, increased ratios of plasma:RBCs (adjusted hazard ratio = 0.31; 95% CI, 0.16-0.58) and platelets:RBCs (adjusted hazard ratio = 0.55; 95% CI, 0.31-0.98) were independently associated with decreased 6-hour mortality, when hemorrhagic death predominated. In the first 6 hours, patients with ratios less than 1:2 were 3 to 4 times more likely to die than patients with ratios of 1:1 or higher. After 24 hours, plasma and platelet ratios were unassociated with mortality, when competing risks from nonhemorrhagic causes prevailed.

Conclusions: Higher plasma and platelet ratios early in resuscitation were associated with decreased mortality in patients who received transfusions of at least 3 units of blood products during the first 24 hours after admission. Among survivors at 24 hours, the subsequent risk of death by day 30 was not associated with plasma or platelet ratios.

Trauma before and beyond the hospital

July 2, 2013 by  
Filed under All Updates, EMS, ICU, Podcasts, Resus, Trauma

Comments Off

Sydney HEMS physician Dr Brian Burns talks about the prehospital care of trauma in this 20 minute audio podcast recorded at SMACC 2013

Further talks from the SMACC conference are available for free download on iTunes.

Here are the accompanying slides:

Intranasal ketamine for kids – 1mg / kg?

May 9, 2013 by  
Filed under All Updates, EMS, Kids, Trauma

Comments Off

A small pilot study on a convenience sample of children presenting to the emergency department with acute limb injury pain evaluated the use of intranasal ketamine(1).

Initial dose averaged 0.84 mg/kg and a third of the patients required a top up dose at 15 minutes, resulting in a total dose of about 1.0 mg/kg to provide adequate analgesia by 30 min for most patients. The authors suggest that this could guide investigators on an appropriate dose of IN ketamine for use in clinical trials.

Adverse events were all transient and mild.

Prior to administration, the ketamine was diluted with saline to a total volume of 0.5 mL and was administered as 0.25 mL per nare using a Mucosal Atomiser Device (MAD, Wolfe Tory Medical, Salt Lake City, UT, USA). According to the protocols in my Service, this device requires 0.1 ml to prime its dead space(2). It is unclear whether this factor may have affected the total dose delivered to the patient in this study.

1. Sub-dissociative dose intranasal ketamine for limb injury pain in children in the emergency department: A pilot study
Emerg Med Australas. 2013 Apr;25(2):161-7


OBJECTIVE: The present study aims to conduct a pilot study examining the effectiveness of intranasal (IN) ketamine as an analgesic for children in the ED.

METHODS: The present study used an observational study on a convenience sample of paediatric ED patients aged 3-13 years, with moderate to severe (≥6/10) pain from isolated limb injury. IN ketamine was administered at enrolment, with a supplementary dose after 15 min, if required. Primary outcome was change in median pain rating at 30 min. Secondary outcomes included change in median pain rating at 60 min, patient/parent satisfaction, need for additional analgesia and adverse events being reported.

RESULTS: For the 28 children included in the primary analysis, median age was 9 years (interquartile range [IQR] 6-10). Twenty-three (82.1%) were male. Eighteen (64%) received only one dose of IN ketamine (mean dose 0.84 mg/kg), whereas 10 (36%) required a second dose at 15 min (mean for second dose 0.54 mg/kg). The total mean dose for all patients was 1.0 mg/kg (95% CI: 0.92-1.14). The median pain rating decreased from 74.5 mm (IQR 60-85) to 30 mm (IQR 12-51.5) at 30 min (P < 0.001, Mann-Whitney). For the 24 children who contributed data at 60 min, the median pain rating was 25 mm (IQR 4-44). Twenty (83%) subjects were satisfied with their analgesia. Eight (33%) were given additional opioid analgesia and the 28 reported adverse events were all transient and mild.

CONCLUSIONS: In this population, an average dose of 1.0 mg/kg IN ketamine provided adequate analgesia by 30 min for most patients

2. Case report: prehospital use of intranasal ketamine for paediatric burn injury
Emerg Med J. 2011 Apr;28(4):328-9


In this study, the administration of an intravenous ketamine formulation to the nasal mucosa of a paediatric burn victim is described in the prehospital environment. Effective analgesia was achieved without the need for vascular or osseous access. Intranasal ketamine has been previously described for chronic pain and anaesthetic premedication. This case highlights its potential as an option for prehospital analgesia.

Another argument for ED thoracotomy

April 18, 2013 by  
Filed under All Updates, EMS, ICU, Kids, Resus, Trauma

ICM-iconA team from Los Angeles (including the great Kenji Inaba) has published a study on penetrating cardiac wounds in the pediatric population[1]. This is one of the largest studies on this thankfully rare event.

The outcome was poor which may be due to the high proportion of patients arriving at hospital without signs of life (SOL).

What I like about the paper is the discussion of their liberal policy for the use of resuscitative ED thoracotomy:


…we do not rely heavily on prehospital data regarding the precise timing of loss of SOL. Thus, at the discretion of the attending trauma surgeon, every penetrating injury to the chest with SOL lost during patient transport will be considered for ED thoracotomy.

In cases when a perfusing cardiac rhythm is regained, the patient will receive all operative and critical care support as standard of care. If the patient progresses to brain death, aggressive donor management will be implemented in accordance with consent obtained by the organ procurement organization.

In a recent publication, we observed two pediatric patients who underwent ED thoracotomy that subsequently became organ donors after brain death was declared [2]. A total of nine organs were recovered for transplantation. This contemporary outcome measure is of paramount importance in the current era of significant organ shortage.


When such aggressive resuscitative procedures are attempted on arrested trauma patients, there is a temptation to justify inaction on the grounds of futility or the risk of ‘creating a vegetable’. This paper reminds us that other outcome benefits may arise from attempted resuscitation even if the patient does not survive.

These benefits include the saving of other lives through organ donation. In addition to this, there is the opportunity for family members to be with their loved one on the ICU, to hold their warm hand for the last time, to hear the news broken by a team they have gotten to know and trust, to enact any spiritual or religious rites that may provide a source of comfort and closure, and to be there during withdrawal of life sustaining therapies after diagnosis of brain stem death. That will never be pleasant, but on the bleak spectrum of parental torture it may be better than being told the devastating news in the ED relatives’ room by a stranger they’ve never met but will remember forever.

The ED thoracotomy may at the very least remove any doubt that everything that could have been done, was done.

1. Penetrating cardiac trauma in adolescents: A rare injury with excessive mortality
Journal of Pediatric Surgery (2013) 48, 745–749


Background Penetrating cardiac injuries in pediatric patients are rarely encountered. Likewise, the in-hospital outcome measures following these injuries are poorly described.

Methods All pediatric patients (<18years) sustaining penetrating cardiac injuries between 1/2000 and 12/2010 were retrospectively identified using the trauma registry of an urban level I trauma center. Demographic and admission variables, operative findings, and hospital course were extracted. Outpatient follow-up data were obtained through chart reviews and cardiac-specific imaging studies.

Results During the 11-year study period, 32 of the 4569 pediatric trauma admissions (0.7%) sustained penetrating cardiac injuries. All patients were male and the majority suffered stab wounds (81.2%). The mean systolic blood pressure on admission was 28.8±52.9mmHg and the mean ISS was 46.9±27.7. Cardiac chambers involved were the right ventricle (46.9%), the left ventricle (43.8%), and the right atrium (18.8%). Overall, 9 patients (28.1%) survived to hospital discharge. Outpatient follow-up echocardiography was available for 4 patients (44.4%). An abnormal echocardiography result was found in 1 patient, demonstrating hypokinesia and tricuspid regurgitation.

Conclusions Penetrating cardiac trauma is a rare injury in the pediatric population. Cardiac chambers predominantly involved are the right and left ventricles. This injury is associated with a low in-hospital survival (<30%).

2. Organ donation: an important outcome after resuscitative thoracotomy
J Am Coll Surg. 2010 Oct;211(4):450-5


BACKGROUND: The persistent shortage of transplantable organs remains a critical issue around the world. The purpose of this study was to investigate outcomes, including organ procurement, in trauma patients undergoing resuscitative emergency department thoracotomy (EDT). Our hypothesis was that potential organ donor rescue is one of the important outcomes after traumatic arrest and EDT.

STUDY DESIGN: Retrospective study at Los Angeles County and University of Southern California Medical Center. Patients undergoing resuscitative EDT from January 1, 2006 through June 30, 2009 were analyzed. Primary outcomes measures included survival. Secondary outcomes included organ donation and the brain-dead potential organ donor.

RESULTS: During the 42-month study period, a total of 263 patients underwent EDT. Return of a pulse was achieved in 85 patients (32.3%). Of those patients, 37 (43.5%) subsequently died in the operating room and 48 (56.5%) survived to the surgical intensive care unit. Overall, 5 patients (1.9%) survived to discharge and 11 patients (4.2%) became potential organ donors. Five of the 11 potential organ donors had sustained a blunt mechanism injury. Of the 11 potential organ donors, 8 did not donate: 4 families declined consent, 3 because of poor organ function, and 1 expired due to cardiopulmonary collapse. Eventually 11 organs (6 kidneys, 2 livers, 2 pancreases, and 1 small bowel) were harvested from 3 donors. Two of the 3 donors had sustained blunt injury and 1 penetrating mechanism of injury.

CONCLUSIONS: Procurement of organs is one of the tangible outcomes after EDT. These organs have the potential to alter the survival and quality of life of more recipients than the number of survivors of the procedure itself.

Traumatic cardiac arrest outcomes

February 25, 2013 by  
Filed under All Updates, EMS, ICU, Kids, Resus, Trauma

simEver heard anyone spout dogma along the lines of: “it’s a traumatic cardiac arrest – resuscitation is futile as the outcome is hopeless: survival is close to zero per cent”?

I have. Less frequently in recent years, I’ll admit, but you still hear it spout forth from the anus of some muppet in the trauma team. Here’s some recent data to add to the existing literature that challenges the ‘zero per cent survival’ proponents. A Spanish study retrospectively analysed 167 traumatic cardiac arrests (TCAs). 6.6% achieved a complete neurological recovery (CNR), which increased to 9.4% if the first ambulance to arrive contained an advanced team including a physician. Rhythm and age were important: CNR was achieved in 36.4% of VFs, 7% of PEAs, and 2.7% of those in asystole; survival rate by age groups was 23.1% in children, 5.7% in adults, and 3.7% in the elderly.

Since traumatic arrest tends to affect a younger age group than medical arrests, the authors suggest:

Avoiding the potential decrease in life expectancy in this kind of patient justifies using medical resources to their utmost potential to achieve their survival

Since 2.7% of the asystolic patients achieved a CNR, the authors challenge the practice proposed by some authors that Advanced Life Support be withheld in TCA patients with asystole as the initial rhythm:

had that indication been followed, three of our patients who survived neurologically intact would have been declared dead on-scene.”

I’d like to know what interventions were making the difference in these patients. They describe what’s on offer as:


In our EMS, all TCA patients receive ALS on-scene, which includes intubation, intravenous access, fluid and drug therapy, point-of-care blood analysis, and procedures such as chest drain insertion, pericardiocentesis, or Focused Assessment with Sonography for Trauma ultrasonography to improve the treatment of the cause of the TCA.

It appears that crystalloids and colloids are their fluid therapy of choice; unlike many British and Australian physician-based prehospital services they made no mention of the administration of prehospital blood products.

Traumatic cardiac arrest: Should advanced life support be initiated?
J Trauma Acute Care Surg. 2013 Feb;74(2):634-8


BACKGROUND: Several studies recommend not initiating advanced life support in traumatic cardiac arrest (TCA), mainly owing to the poor prognosis in several series that have been published. This study aimed to analyze the survival of the TCA in our series and to determine which factors are more frequently associated with recovery of spontaneous circulation (ROSC) and complete neurologic recovery (CNR).

METHODS: This is a cohort study (2006-2009) of treatment benefits.

RESULTS: A total of 167 TCAs were analyzed. ROSC was obtained in 49.1%, and 6.6% achieved a CNR. Survival rate by age groups was 23.1% in children, 5.7% in adults, and 3.7% in the elderly (p < 0.05). There was no significant difference in ROSC according to which type of ambulance arrived first, but if the advanced ambulance first, 9.41% achieved a CNR, whereas only 3.7% if the basic ambulance first. We found significant differences between the response time and survival with a CNR (response time was 6.9 minutes for those who achieved a CNR and 9.2 minutes for those who died). Of the patients, 67.5% were in asystole, 25.9% in pulseless electrical activity (PEA), and 6.6% in VF. ROSC was achieved in 90.9% of VFs, 60.5% of PEAs, and 40.2% of those in asystole (p < 0.05), and CNR was achieved in 36.4% of VFs, 7% of PEAs, and 2.7% of those in asystole (p < 0.05). The mean (SD) quantity of fluid replacement was greater in ROSC (1,188.8 [786.7] mL of crystalloids and 487.7 [688.9] mL of colloids) than in those without ROSC (890.4 [622.4] mL of crystalloids and 184.2 [359.3] mL of colloids) (p < 0.05).

CONCLUSION: In our series, 6.6% of the patients survived with a CNR. Our data allow us to state beyond any doubt that advanced life support should be initiated in TCA patients regardless of the initial rhythm, especially in children and those with VF or PEA as the initial rhythm and that a rapid response time and aggressive fluid replacement are the keys to the survival of these patients.

Alternative ‘universal’ plasma donor

February 19, 2013 by  
Filed under All Updates, EMS, ICU, Resus, Trauma

Comments Off

The group usually considered the universal donor for fresh frozen plasma because it contains no anti-A or anti-B antibodies is Type AB. Due to its limited availability the trauma service of the Mayo Clinic in Minnesota has been issuing thawed group A plasma to its flight crews who retrieve major trauma casualties from rural centres. This is given with packed group O red cells to patients who meet their prehospital massive transfusion protocol criteria. Some patients will inevitably receive ABO-incompatible plasma (namely patients with Group B or AB blood) which could theoretically give rise to haemolytic transfusion reactions, in which donor antibodies bind host red cells, activate complement, and give rise to anaemia, disseminated intravascular coagulation, acute kidney injury, and death. However:

  • the transfusion of platelets containing ABO-incompatible plasma is common, with up to 2 units of incompatible plasma per apheresis platelet unit, whereas haemolytic reactions to platelets are rare (1 in 9,000 incompatible platelet transfusions);
  • all reports of haemolytic reactions are caused by products that contain Group O plasma and there has never been a documented case of haemolysis as a result of products containing Group A plasma

A retrospective review showed no increased rates of adverse events with Type A compared with AB or ABO-compatible plasma. Since only a small absolute number of patients received an ABO-incompatible plasma transfusion, it could be argued that the study is underpowered (a point acknowledged by the authors). However this is very important and useful information for resource-limited settings.

Emergency use of prethawed Group A plasma in trauma patients
J Trauma Acute Care Surg. 2013 Jan;74(1):69-74


BACKGROUND: Massive transfusion protocols lead to increased use of the rare universal plasma donor, Type AB, potentially limiting supply. Owing to safety data, with a goal of avoiding shortages, our blood bank exploited Group A rather than AB for all emergency release plasma transfusions. We hypothesized that ABO-incompatible plasma transfusions had mortality similar to ABO-compatible transfusions.

METHODS: Review of all trauma patients receiving emergency release plasma (Group A) from 2008 to 2011 was performed. ABO compatibility was determined post hoc. Deaths before blood typing were eliminated. p < 0.05 was considered statistically significant.

RESULTS: Of the 254 patients, 35 (14%) received ABO-incompatible and 219 (86%) received ABO-compatible transfusions. There was no difference in age (56 years vs. 59 years), sex (63% vs. 63% male), Injury Severity Score (ISS) (25 vs. 22), or time spent in the trauma bay (24 vs. 26.5 minutes). Median blood product units transfused were similar: emergency release plasma (2 vs. 2), total plasma at 24 hours (6 vs. 4), total red blood cells at 24 hours (5 vs. 4), plasma-red blood cells at 24 hours (1.3:1 vs. 1.1:1), and plasma deficits at 24 hours (2 vs. 1). Overall complications were similar (43% vs. 35%) as were rates of possible transfusion-related acute lung injury (2.9% vs. 1.8%), acute lung injury (3.7% vs. 2.5%), adult respiratory distress syndrome (2.9% vs. 1.8%), deep venous thrombosis (2.9% vs. 4.1%), pulmonary embolism (5.8% vs. 7.3%), and death (20% vs. 22%). Ventilator (6 vs. 3), intensive care unit (4 vs. 3), and hospital days (9 vs. 7) were similar. There were no hemolytic reactions. Mortality was significantly greater for the patients who received incompatible plasma if concurrent with a massive transfusion (8% vs. 40%, p = 0.044). Group AB plasma use was decreased by 96.6%.

CONCLUSION: Use of Group A for emergency release plasma resulted in ABO-incompatible transfusions; however, this had little effect on clinical outcomes. Blood banks reticent to adopt massive transfusion protocols owing to supply concerns may safely use plasma Group A, expanding the pool of emergency release plasma donors.

LEVEL OF EVIDENCE: Therapeutic study, level IV; prognostic study, level III.

Swelling worse than bleeding for injured brains

December 30, 2012 by  
Filed under All Updates, ICU, Resus, Trauma

Comments Off

EDHicon

A study on data from traumatic brain injury patients from the the TARN database examined the prognostic value of various scoring and classification systems and pathologies.

Contusion and haemorrhage appeared to be less significant predictors of outcome than the presence of brain swelling in this British dataset.

The brainstem was the most significant location of cerebral injury.

Prognostic value of various intracranial pathologies in traumatic brain injury
European Journal of Trauma and Emergency Surgery February 2012, Volume 38, Issue 1, pp 25-32


Objective Various intracranial pathologies in traumatic brain injury (TBI) can help to predict patient outcomes.
These pathologies can be categorised using the Marshall Classification or the Abbreviated Injury Scale (AIS) dictionary or can be described through traditional descriptive terms such as subarachnoid haemorrhage (SAH), subdural haemorrhage (SDH), epidural haemorrhage (EDH) etc. The purpose of this study is to assess the prognostic value of AIS scores, the Marshall Classification and various intracranial pathologies in TBI.

Methods A dataset of 802 TBI patients in the Trauma Audit and Research Network (TARN) database was analysed using logistic regression. First, a baseline model was constructed with age, Glasgow Coma Scale (GCS), pupillary reactivity, cause of injury and presence/absence of extracranial injury as predictors and survival at discharge as the outcome. Subsequently, AIS score, the Marshall Classification and various intracranial pathologies such as haemorrhage, SAH or brain swelling were added in order to assess the relative predictive strength of each variable and also to assess the improvement in the performance of the model.

Results Various AIS scores or Marshal classes did not appear to significantly affect the outcome. Among traditional descriptive terms, only brain stem injury and brain swelling significantly influenced outcome [odds ratios for survival: 0.17 (95% confidence interval [CI]; 0.08–0.40) and 0.48 (95% CI; 0.29–0.80), respectively].
Neither haemorrhage nor its subtypes, such as SAH, SDH and EDH, were significantly associated with outcome. Adding AIS scores, the Marshall Classification and various
intracranial pathologies to the prognostic models resulted in an almost equal increase in the predictive performance of the baseline model.

Conclusions In this relatively recent dataset, each of the brain injury classification systems enhanced equally the performance of an early mortality prediction model in traumatic brain injury patients. The significant effect of brain swelling and brain stem injury on the outcome in comparison to injuries such as SAH suggests the need to improve therapeutic approaches to patients who have sustained these injuries.

Next Page »